摘要
研究了任意正交偏振基矢下光的相干矩阵与其斯托克斯空间坐标的关系,研究表明任意正交偏振基下的相干矩阵都可以用其斯托克斯空间坐标表征。在此基础上,提出了一种根据斯托克斯空间坐标直接测量任意偏振基下光器件琼斯矩阵的方法,并对法拉第旋转器进行了验证实验。实验证明该方法可避免斯托克斯矢量与琼斯矢量之间,或穆勒矩阵与琼斯矩阵之间的转换,使光器件偏振特性的测量和光路偏振性能的分析更为便捷。
The relationship between the coherency matrix of arbitrary orthogonal basic vectors and their coordinates in the Stokes space is studied. It is revealed that the coherency matrix of different basic vectors can be concisely represented by their coordinates in the Stokes space. On this basis, a new method to directly measure the Jones matrix of an optical device is proposed and verified experimentally with a Faraday rotator. The Jones matrix of arbitrary basic vectors can be obtained without any transformation between the Stokes vectors and the Jones vectors, or between the Muller matrices and the Jones matrices. This provides a more convenient way to measure the polarization properties of optical devices and analyze the polarization performance of optical loops.
出处
《激光与光电子学进展》
CSCD
北大核心
2016年第9期243-249,共7页
Laser & Optoelectronics Progress
基金
国家自然科学基金(61107075)
上海市重点学科建设项目(S30108)
关键词
物理光学
偏振光学
琼斯矩阵
斯托克斯空间
相干矩阵
正交基矢
physical optics
polarization optics
Jones matrix
Stokes space
coherency matrix
orthogonal basic vectors