期刊文献+

夜间行人图像的智能识别方法改进 被引量:1

Improvement of Intelligent Identification Method for the Pedestrian Images at Night
下载PDF
导出
摘要 在夜视条件下对行人识别、检测过程中会产生拍摄视角变化的复杂性、行人衣着和姿态的多样性、成像尺度的实时性不足等问题,尤其是对人脸、指纹等细节特征的识别尤为困难。传统方法在夜间对行人的识别缺乏实效性和精准性,提出基于优化的IE_HOG特征方法,在夜间能更精确地描述人体轮廓特征,结合Radon变换动态特征提取技术,对行人在夜间的步态图像进行智能识别。试验证明提出的方法能够在夜间更好地对行人轮廓特征和步态变换情况进行精准的识别,同时降低目标敏感性,排除树木、建筑物等遮档物的干扰,提高鲁棒性,图像识别率可以达到94.39%。 It can lead to complexity of view variation, diversity of pedestrian clothing and posture and poor instantaneity of imaging scale to identify pedestrian under the night vision condition in the progress of detection. The detail feature identification of face and fingerprint is especially difficult. Traditional method is short of effectiveness and precision of pedestrian identification at night. In this paper, we propose a modified IE_HOG feature method. It described body contour feature more precisely. We integrate the Radon transformation dynamic feature extraction technique to identify gait image of pedestrian at night intelligently. The experiment results show that the method mentioned above can identify the contour feature and gait variation state precisely. It can reduce the target sensibility, eliminate the interference of trees and construction and improve the robustness. The rate of image recognition can reach 94. 39%.
作者 丁勤
出处 《计算机仿真》 CSCD 北大核心 2016年第9期233-236,308,共5页 Computer Simulation
基金 江苏省淮安教学具产业数字化公共技术服务中心(BM2011096) 基于构件的职业院校嵌入式系统课程教学具开发(HC201317-8) 江苏省淮安设施农业智能化公共技术服务中心(BM2009825)
关键词 夜视条件 变换 仿真 Night vision conditions Modified IE_HOG Radon transformation
  • 相关文献

参考文献10

二级参考文献59

  • 1汪小毅,林江莉,李德玉,汪天富,郑昌琼,程印蓉.基于纹理分析的脂肪肝B超图像识别[J].航天医学与医学工程,2004,17(2):144-148. 被引量:19
  • 2Lin Chunfu, Wang Shengde. Fuzzy Support Vector Machines[J]. IEEE Transactions on Neural Networks, 2002, 13(2): 464-471.
  • 3孟嫒嫒.模糊支持向量机的研究与应用[D].济南:山东师范大学,2006.
  • 4Xu F,Liu X,Fujimura K.Pedestrian detection and tracking with night vision.IEEE Trans on Intelligent Transportation Systems,2005;6(1):63-71.
  • 5Bertozzi M,Broggi A.Pedestrian detection by means of far-infrared stereo vision.Computer Vision and Image Understanding,2007;106:194-204.
  • 6DAVIS J W,SHARMA V.Robust background-subtraction for person detection in termal imagery.Proc of the IEEE Computer Society Conference on Computer Vison and Pattern Recognition Workshop,Washington,D.C.,2004; 8(8):128-135.
  • 7Nanda H,Davis L.Probabilistic template based pedestrian detection in infrared videos.Procs IEEE Intelligent Vehicles Symposium,Versailles,2002.
  • 8Bertozzi M,Broggi A,Del Rose M,et al.A symmetry-based validator and refinement system for pedestrian detection in far infrared images.IEEE Intelligent Transportation Systems Conference,Seattle,2007.
  • 9Enzweiler M,Gavrila D M.Monocular pedestrian detection:survey and experiments.IEEE Transactions on Pattern Analysis and Machine Intelligence,2009 ;31 (12):2179-2195.
  • 10Bertozzi M,Broggi A.Pedestrian detection in far infrared images based on the use of probabilistic templates.IEEE Intelligent Vehicles Symposium,Istanbul,2007.

共引文献42

同被引文献4

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部