期刊文献+

资源受限无线传感器网络的入侵检测研究 被引量:2

Resource Constraints of Wireless Sensor Network Intrusion Detection Research
下载PDF
导出
摘要 对资源受限无线传感器网络的入侵进行准确检测,是为了保证应用的安全性。资源受限传感网络由于不是所有节点全部参与通信,节点资源存在较大的约束,节点分布具有明显的不均衡性,节点能量消耗存在波动。传统的入侵检测方法无法根据能量变化的特征,对入侵进行识别,只能选取少量较为均衡的资源特征进行对比识别,降低入侵检测的准确率。为此提出基于资源均衡的无线传感器网络的入侵检测方法。根据剩余的能量的大小将传感器节点赋予不同的功能,包括sink节点、簇首节点、监视节点、首节点、叶子节点。为了降低能量的消耗,CH、SM、SH这几种节点的功能可进行动态转换,并将簇内的传感器节点划分为数个段。并在相关节点中部署检测器进行入侵检测。仿真结果表明,改进算法能够提高无线传感器网络入侵检测的准确率,并缩短了检测时间。 The accurate intrusion detection in wireless sensor network with limited resources is to ensure the secu- rity of the application. Because not all nodes are involved in the communication, the node resources of the sensor network with limited resources has a large constraint. Node distribution is not balanced, and the energy consumption of nodes fluctuates. The traditional intrusion detection methods cannot identify the intrusion according to the characteristics of energy change, and can only choose a small amount of more balanced resource characteristics to identify and reduce the accuracy of intrusion detection. For this problem, an intrusion detection method for wireless sensor net- work based on resource balanced is proposed. According to the diferent residual energy, the sensor nodes will be giv- en different functions, including sink node, cluster head node, monitoring node, the first node and leaf node. In order to reduce the consumption of energy, the functions of the CH, SM and SH nodes can be dynamically converted, and the sensor nodes in the cluster can be divided into several segments. And the detector is deployed in the related nodes for intrusion detection. The simulation results show that the improved algorithm can increase the accuracy of intrusion detection in wireless sensor network, and shorten the detection time.
作者 顾炜江
出处 《计算机仿真》 CSCD 北大核心 2016年第9期301-304,共4页 Computer Simulation
关键词 资源受限 无线传感器网络 入侵检测 Resource limited Wireless sensor network (WSN) Intrusion detection
  • 相关文献

参考文献9

二级参考文献88

  • 1卿斯汉,蒋建春,马恒太,文伟平,刘雪飞.入侵检测技术研究综述[J].通信学报,2004,25(7):19-29. 被引量:234
  • 2汪兴东,佘堃,周明天,刘恒.基于BP神经网络的智能入侵检测系统[J].成都信息工程学院学报,2005,20(1):1-4. 被引量:28
  • 3苏高利,邓芳萍.关于支持向量回归机的模型选择[J].科技通报,2006,22(2):154-158. 被引量:59
  • 4俞波,杨珉,王治,高传善.选择传递攻击中的异常丢包检测[J].计算机学报,2006,29(9):1542-1552. 被引量:24
  • 5Ma J,Zhang S,Zhong Y,et al.SAID:A self-adaptive intrusion detectionsystem in wireless sensor networks[C]//Proc.of the WISA 2006,LNCS4298,2007:60-73.
  • 6Onat I,Miria A.An intrusion detection system for wireless sensor net-works[C]//Proc of IEEE International Conference on Wireless andMobile Computing,Networking and Communications(WMiOB 2005).2005.
  • 7Deng J,Han R,Mishra S.Defending againstpath-based DoS attacks inwireless sensor networks[C]//Proc of the 3rd ACMWork-shop on Se-curity of Ad hoc and Sensor Networks.Alexandria,VA:[s.n.],2005:89-96.
  • 8Strikos A.A fullapproach for intrusion detection inwireless sensor networks[EB/OL].(2007).http://www.it.kth.se/courses/2G1330.
  • 9Rajasegarar S,Leckie C,Palaniswami M,et al.Distributed anomaly detec-tion in wireless sensor networks[C]//Proc of the 10th IEEE Singapore In-ternationalConference on Communication System(ICCS 2006).2006.
  • 10Su C C,Chang K M,Kuo Y H,et al.The new intrusion prevention anddetection approaches for clustering-based sensor networks[C]//Procof IEEE Wireless Communications and Networking Conference.2005:1927-1932.

共引文献31

同被引文献19

引证文献2

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部