期刊文献+

融合遮挡感知的在线Boosting跟踪算法 被引量:1

Online Boosting tracking algorithm combined with occlusion sensing
下载PDF
导出
摘要 提出融合遮挡感知的在线Boosting跟踪算法,该算法对跟踪结果实时进行遮挡检测,根据检测结果自适应调整分类器更新策略。该方式能够有效维护分类器特征池的纯净,提高算法在遮挡环境下的顽健性。实验结果表明,与传统的在线Boosting跟踪算法相比,改进的算法能有效解决目标遮挡问题。 Online Boosting tracking algorithm combined with occlusion sensing was presented. In this method, occlusion sensor was introduced to check the tracking results, and classifier updating strategy was adjusted depending on the occlusion checking results. By this way, the feature pool of the classifier can be kept pure, which will improve the tracking robustness under occlusion. Experimental results show that compared with traditional Boosting tracking algorithm, improved algorithm can solve the problem of occlusion very well.
出处 《通信学报》 EI CSCD 北大核心 2016年第9期92-101,共10页 Journal on Communications
基金 国家自然科学基金资助项目(No.61379151 No.61521003) 国家科技支撑计划基金资助项目(No.2014BAH30B01) 河南省杰出青年基金资助项目(No.144100510001)~~
关键词 在线Boosting 遮挡感知 ORB特征 目标跟踪 online Boosting occlusion sensing ORB feature object tracking
  • 相关文献

参考文献16

  • 1罗会兰,杜芳芳,孔繁胜.像素点特征加权的尺度自适应跟踪算法[J].通信学报,2015,36(10):200-210. 被引量:3
  • 2张焕龙,胡士强,杨国胜.基于外观模型学习的视频目标跟踪方法综述[J].计算机研究与发展,2015,52(1):177-190. 被引量:64
  • 3BAI Y, TANG M. Robust tracking via weakly supervised ranking SVM[C]//The IEEE Conference on Computer Vision and Pattern Recognition. 2012: 1854-1861.
  • 4GRABNER H, BISCHOF H. On-lino boosting and vision[C]//The IEEE Confcranc on Computer Vision and Patton Recognition. 2006: 260-267.
  • 5程有龙,李斌,张文聪,庄镇泉.融合先验知识的自适应行人跟踪算法[J].模式识别与人工智能,2009,22(5):704-708. 被引量:9
  • 6颜佳,吴敏渊.遮挡环境下采用在线Boosting的目标跟踪[J].光学精密工程,2012,20(2):439-446. 被引量:22
  • 7ADAM A, RIVLIN E, SHIMSHONI I. Robust fragments-based track- ing using the integral histograrn[C]//The IEEE Conference on Com- puter Vision and Pattern Recognition. 2006: 798-805.
  • 8HU H, MA B, WU Y, et al. Kernel regression based online boosting tracking[J]. Journal of Information Science and Engineering, 2015, 31(1): 267-282.
  • 9YANG F, LU H, YANG M H, Robust visual tracking via multiple kernel boosting with affinity constraints[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2014, 24(2): 242-254.
  • 10GRABNER H, LEISTNER C, BISCHOF H. Semi-supervised on-line boosting for robust tracking[C]//The European Conference on Com- puter Vision. 2008: 234-247.

二级参考文献143

  • 1Hager G D, Belhumeu P N. Efficient Region Tracking with Parametric Models of Geometry and Illumination. IEEE Trans on Pattern Analysis and Machine Intelligence, 1998, 20(10) : 1025 -1039.
  • 2Comaniciu D, Ramesh V, Meer P. Kernel-Based Object Tracking. IEEE Trans on Pattern Analysis and Machine Intelligence, 2003,25 (5) : 564 -577.
  • 3Zhao Tao, Nevatia R. Tracking Muhiple Humans in Complex Situations. IEEE Trans on Pattern Analysis and Machine Intelligence, 2004, 26(9) : 1208 - 1221.
  • 4Deutscher J, Blake A, Reid I. Articulated Body Motion Capture by Annealed Particle Filtering// Proc of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Hilton Head Island, USA, 2000, Ⅱ: 2126 -2133.
  • 5Avidan S. Ensemble Tracking. IEEE Trans on Pattern Analysis and Machine Intelligence, 2007, 29(2): 261 -271.
  • 6Grabner H, Bischof H. On-line Boosting and Vision// Proc of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. New York, USA, 2006 : I : 260 - 267.
  • 7Javed O, Ali S, Shah M. On-line Detection and Classification of Moving Objects Using Progressively Improving Detectors // Proc of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. San Diego, USA, 2005, I : 696 -701.
  • 8Wu Bo, Nevatia R. Improving Part Based Object Detection by Unsupervised, On-line Boosting// Proc of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Minneapolis, USA, 2007 : 1 -8.
  • 9Dalal N, Triggs B. Histograms of Oriented Gradients for Human Detection//Proc of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. San Diego, USA, 2005, I : 886 - 893.
  • 10Wu Bo, Nevatia R. Detection of Multiple, Partially Occluded Humans in a Single Image by Bayesian Combination of Edgelet Part Detectors// Proc of the 10th IEEE International Conference on Computer Vision. Beijing, China, 2005, I : 90 -97.

共引文献112

同被引文献13

引证文献1

二级引证文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部