期刊文献+

基于分布式控制的电动汽车分层优化调度 被引量:31

Hierarchical Optimal Scheduling for Electric Vehicles Based on Distributed Control
下载PDF
导出
摘要 针对传统的集中式控制方式计算量大,电动汽车用户难以接受集中控制指令的问题,采用基于分布式控制的电动汽车充放电分层管理框架,适用于大规模电动汽车的优化调度。采取用户自主提交可接受充电计划集、本地运营商审核、配电网控制中心统一调度的方式对电动汽车的充放电行为进行管理。在对电动汽车的充放电负荷进行建模的基础上,分别建立电动汽车智能体最大化自身收益的车网互动优化模型、本地运营商最小化负荷峰谷差的优化调度模型,以及配电网控制中心的安全控制调度模型,兼顾各个层次的效益。以包含3个本地运营商的IEEE 33节点系统为例,对各个层次的行为及控制策略进行仿真,验证了所述分层管理架构的有效性。 Considering the large amount of calculation and difficult control instruction acceptance for electric vehicle( EV) consumers by using traditional centralized control strategies,a vehicle-to-grid( V2G) management framework of hierarchical architecture is adopted based on distributed control,which is applicable to large-scale EV optimization scheduling. In the framework,EV agents submit their charging schemes to local operator agents( LAs) that is in the control of distribution networks center agents( DNAs).Through building the charging and discharging load model of a single EV agent,the V2 G optimization model of EV agent for maximizing its profit is built. LA aims at minimizing the peak-valley difference and DNA is committed to ensure the safety of distribution networks.In the case of IEEE 33-bus system with 3 LAs,the behaviors and strategies of each layer are simulated to verify the effectiveness of proposed hierarchical architecture.
出处 《电力系统自动化》 EI CSCD 北大核心 2016年第18期24-31,47,共9页 Automation of Electric Power Systems
基金 国家自然科学基金资助项目(51577115) 国家科技支撑计划资助项目(2013BAA01B04)~~
关键词 电动汽车 车网互动 分层架构 峰谷差 配电网安全控制 electric vehicle(EV) vehicle-to-grid(V2G) hierarchical architecture peak-valley difference security control of distribution network
  • 相关文献

参考文献25

二级参考文献287

  • 1刘明君,郭继孚,高利平,张德欣,毛保华.私人小汽车出行行为特征分析与建模[J].吉林大学学报(工学版),2009,39(S2):25-30. 被引量:20
  • 2王建学,王锡凡,王秀丽.电力市场可中断负荷合同模型研究[J].中国电机工程学报,2005,25(9):11-16. 被引量:115
  • 3周祖德,徐超.全CMOS三段式锂电池充电器设计[J].武汉理工大学学报,2006,28(4):109-111. 被引量:8
  • 4丁明,齐先军,安玲.旋转备用市场中考虑可靠性的多目标分层决策[J].电力系统自动化,2007,31(13):17-22. 被引量:16
  • 5国务院发展研究中心产业经济研究部.中国汽车产业发展报告(2008)[M].北京:社会科学文献出版社,2008.
  • 6QIAN Kejun, ZHOU Chengke, ALLAN M, et al. Modeling of load demand due to EV battery charging in distribution systems [J]. IEEE Trans on Power Systems, 2011, 26(2): 802-810.
  • 7TREMBLAY O, DESSAINT L A, DEKKICHE A I. A generic battery model for the dynamic simulation of hybrid electric vehicles[C]// Proceedings of IEEE Vehicle Power and Propulsion Conference, September 9-12, 2007, Arlington, TX, USA: 284-289.
  • 8CHEN M, RINCON-MORA G A. Accurate electrical battery model capable of predicting, runtime and I-V performance[J]. IEEE Trans on Energy Conversion, 2006, 21 (2): 504-511.
  • 9KROEZE R C, KREIN P T. Electrical battery model for use ira dynamic electric vehicle simulations[C]// Proceedings of IEEE Power Electronics Specialists Conference, June 15-19, 2008, Rhodes, Greece; 1336-1342.
  • 10CLEMENT NYNS K, VAN REUSEL K, DRIESEN J. The consumption of electrical energy of plug-in hybrid electric vehicles in Belgium[C]// Proceedings of the 2nd European Ele Drive Transportation Conference, May 30-June 1, 2007, Brussels, Belgium: 1-8.

共引文献814

同被引文献425

引证文献31

二级引证文献310

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部