期刊文献+

加权有限自动机的幺半群 被引量:2

Monoids of weighted finite automata
下载PDF
导出
摘要 讨论了加权有限自动机的变换幺半群,并通过加权有限自动机的同余关系,提出了语法幺半群的概念,给出了语法幺半群有限的条件,并建立了变换幺半群与语法幺半群之间的关系。最后讨论了加权有限自动机的转移幺半群。 The transformation monoid of weighted finite automata is introduced.According to the congruence relation of weighted finite automata,the concept of sytactic monoid is presented,and some conditions for syntactic monoid being finite are given,and the relationship between transformation monoid and syntactic monoid is established.Finally,the transition monoid of weighted finite automata is discussed.
作者 王拥兵 李永明 WANG Yongbing LI Yongming(School of Computer Science, Shaanxi Normal University, Xi'an 710119, Shaanxi, China School of Mathematics and Computation, Anqing Normal University, Anqing 246013, Anhui, China)
出处 《陕西师范大学学报(自然科学版)》 CAS CSCD 北大核心 2016年第5期21-25,共5页 Journal of Shaanxi Normal University:Natural Science Edition
基金 国家自然科学基金(11271237 11301316) 安庆师范学院青年科研基金(KJ201413 KJ201214)
关键词 半环 加权有限自动机 局部有限 同态 semiring weighted finite automata locally finiteness homomorphism
  • 相关文献

参考文献15

  • 1SCHUTZENBERGER M P. On the definition of a fami- ly of automata [J]. Information and Control, 1961,4: 245-270.
  • 2DROSTE M, KUICH W, VOGLER H. Handbook of weighted automata[M]. Berlin: Springer, 2009.
  • 3AMINOF B, KUPFERMAN O, LAMPERT R. Rigor- ous approximated determinization of weighted automata [J]. Theoretical Computer Science, 2013, 480 (8) : 104-117.
  • 4GASTIN P, MONMEGE B. Adding pebbles to weigh- ted automata: easy specification & efficient evaluation [J]. Theoretical Computer Science, 2014, 534(15): 24- 44.
  • 5EILENBERG E. Automata, languages, and machines [M]. New York: Academic Press, 1974.
  • 6PAZ A. Introduction to prohahilistic automata[M]. New York: Academic Press, 1971.
  • 7ANKINAKATTE S, EDWARDS D. Modelling discrete longitudinal data using acyclic probabilistic finite autom- ata [J]. Computational Statistics & Data Analysis, 2015, 88: 40-52.
  • 8MORDESON J N, MALIK D S. Fuzzy automata and languages: theory and applications[M]. London: Chap- man and Hall, 2002.
  • 9LI Y M, PEDRYCZ W. Fuzzy finite automata and fuzzy regular expressions with membership values in lattice-ordered monoids[J]. Fuzzy Sets and Systems, 2005, 156: 68-92.
  • 10RAJARETNAM T, AYYASWAMY S K. Fuzzy monoids in a fuzzy finite state automaton with unique membership transition on an input symbol[J]. Inter- national Journal of Mathematics and Scientific Compu- ting, 2011, 1(1): 48-51.

二级参考文献22

  • 1Shannon C E, MeCary J. Automata studies[M]. Princeton: Princeton University Press, 1956.
  • 2Hopcroft J E, Ullman J D. Introduction to automata theory, languages and computation[M]. New York: Addison-Wes- ley, 1979.
  • 3Zadeh L A. ()utline of a new approach to the analysis of corn plex systems and decision processes[J]. IEEE Transactions on Systems, Man, and Cybernetics, 1973(1):28 -44.
  • 4Mordeson J N, Malik D S. Fuzzy and languages:Theory and applieations[M]. Boca Paton:Chapman :.Hall/CRC, 2002.
  • 5Malik D S, Mordeson J N, Sen M K. On subsystems of a fuzzy finite state machines [J]. Fuzzy Sets and Systems, 1994,68(2) : 8:3-92.
  • 6Schtitzenberger M P. On the definition of a family of automa ta[J] Information and Control,1961(4):245- 270.
  • 7Salomaa A, Soittola M. Automata theoretic aspects formal power series[M]. Berlin:Springer, 1978.
  • 8Droste M,Kuich W,Vogler H. A Kleene theorem for weigh ted tree automata[J]. Theory of Computing Systems, 2005, 38(1) :1-38.
  • 9Droste M, Gastin P. Weighted automata and weighted logics [J]. Theoretical Computer Science,2007,380(1 2) :69-86.
  • 10Berstel J, Reutenauer C. Noncommutative rational series with applications, encyclopedia of mathematics and its ap- plications [ M]. Cambridge: Cambridge University Press, 2010.

共引文献2

同被引文献9

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部