摘要
3D多媒体传感器网络中的视觉信息的监测更为复杂多变,在感知模型设定、连通覆盖等方面均不同于2D,使得视觉覆盖面临许多新的问题.本文研究3D有向多媒体传感器网络视觉覆盖率优化机制.首先提出3D感知空间近似模型,对节点感知模型进行实例化,通过空间近似方法降低计算复杂度.在此基础上,设计空间冗余最小化的感知方向调整算法,提高节点视域利用率,进而优化视觉覆盖率和有向目标鉴别率.仿真实验结果表明,视觉覆盖率和目标鉴别率分别在随机分布的基础上提高了82.5%和27.6%,即利用该算法能够提高视觉覆盖率和目标鉴别率.
Monitoring visual information in 3D multimedia sensor networks is more complex than 2D in terms of perceptual model and connectivity coverage, leading to a number of new problems. The focus of this paper is on visual coverage ratio optimization in 3D directional multimedia sensor networks. We begin with a 3D perceptual space approximation model to simplify the node perceptual model and reduce computational complexity, followed by a design of perceptual direction adjustment algorithm, with an objective of improving the utilization of visual field and minimizing spatial redundancy. The simulation results demonstrate that visual coverage and target identification rates are increased 82.5% and 27.6% respectively on the basis of random distribution. The algorithm a- chieves oefformance imorovement in terms of visual coverage ratio and tareet recognition ratio.
出处
《小型微型计算机系统》
CSCD
北大核心
2016年第10期2232-2237,共6页
Journal of Chinese Computer Systems
基金
国家自然科学基金项目(61502230
61073197)资助
江苏省自然科学基金项目(BK20150960)资助
江苏省未来网络前瞻性研究项目(BY2013095-4-09)资助
江苏省高校自然科学研究项目(15KJB520015)资助
南京邮电大学宽带无线通信与传感网技术教育部重点实验室开放研究基金课题项目(NYKL201304)资助
关键词
3D有向多媒体传感器网络
空间冗余
视觉覆盖率
目标鉴别率
3D directed multimedia sensor networks
content relevance
visual coverage ratio
target recognition ratio