期刊文献+

求解约束优化问题的ε-骨干粒子群优化算法 被引量:2

ε-bare-bones Particle Swarm Optimization for Constrained Optimization Problems
下载PDF
导出
摘要 为了提高复杂约束优化问题的收敛精度,提出了基于ε约束的骨干粒子群优化算法(Bare-bones Particle Swarm Optimization basedεconstrained简称ε-BPSO).首先,设计了时变的约束放松参数ε,使算法前期充分利用不可行解的有效信息;其次,为了避免早期收敛,提出动态学习BPSO算法,算法中粒子可以随机地向群体的优秀个体学习,并通过自适应学习权重使群体从全局勘探转向局部利用.最后,依概率采用梯度突变策略,将不可行域中的粒子引入可行域,加快搜索可行域的效率.在36个测试函数上测试并将本文算法与多种进化算法进行对比,实验结果和统计分析表明本文算法在求解约束优化问题上具有优越性. A novel bare-bones particle swarm optimization based ε constrained ( ε-BPSO ) is proposed to improve the convergence ac- curacy in solving the complicated constrained optimization problems ( COPs ). Firstly, a time-varying constraint parameter ε is intro- duced to make full use the effective information of infeasible solutions in early stage. Then, in order to avoid premature convergence, a BPSO with dynamic-learning strategy is presented in which particles can randomly learn from the excellent individual, and the adap- tive learning weight is used to achieve the abilities of the swarm from global search to local search over time. Finally, the gradient mu- tation strategy is probabilistically used to make the particles in infeasible region swarm into the feasible region. Simulation results on 36 benchmark test functions show ε-BPSO is competitive with other state-of-the-art optimization algorithms in solving constrained op- timization problems.
出处 《小型微型计算机系统》 CSCD 北大核心 2016年第10期2318-2323,共6页 Journal of Chinese Computer Systems
基金 国家自然科学基金项目(61300059 61502010)资助 安徽省教育厅科学研究重大项目(KJ2015ZD39)资助
关键词 骨干粒子群算法 约束优化 ε约束 梯度突变 bare-bones particle swarm optimization constrained optimization ε constrained gradient mutation
  • 相关文献

参考文献2

二级参考文献17

  • 1Tinoco J C V, Coello C A C. hypDE: A hyper-heuristic based on differential evolution for solving constrained optimization problems[M]. Berlin: Springer, 2013: 267- 282.
  • 2Mezura-Montes E, Coello Coello C A. Constraint handling in nature-inspired numerical optim- ization: past, present and future[J]. Swarm and Evolutionary Computation, 2011, 1(4): 173-194.
  • 3Runarsson T P, Yao X. Stochastic ranking for constrained evolutionary optimization[J]. IEEE Trans on Evolutionary Computation, 2000, 4(3): 284-294.
  • 4Deb K. An efficient constraint handling method for genetic algorithms[J]. Computer Methods in Applied Mechanics and Engineering, 2000, 186(2): 311-338.
  • 5Takahama T, Sakai S. Constrained optimization by the e constrained differential evolution with gradient-based mutation and feasible elites[C]. Proc of the 2006 IEEE Congress on Evolutionary Computation. Singapore: IEEE Press, 2006: 1-8.
  • 6Wang Y, Cai Z. Combining multi-objective optimization with differential evolution to solve constrained optimization problems[J]. IEEE Trans on Evolutionary Computation, 2012, 16 (1): 117-134.
  • 7Liang J J, Runarsson T P, Mezura-Montes E. Problem definitions and evaluation criteria for the CEC 2006 special session on constrained real-parameter optimization[R]. Singapore: Nanyang Technological University, 2006.
  • 8Das S, Suganthan P N. Differential evolution: A survey of the state-of-the-art[J]. IEEE Trans on Evolutionary Computation, 2011, 15(1): 4-31.
  • 9Runarsson T P, Yao X. Search biases inconstrained evolutionary optimization[J]. IEEE Trans on Systems Man and Cybernetics, Part C: Applications and Reviews, 2005, 35(2): 233-243.
  • 10Mezura-Montes E, Veldzquez-Reyes J, Coello Coello. A promising infeasibility and multiple offspring incorporated to differential evolution for constrained optimization[C]. Proc of the 2005 Conf on Genetic and Evolutionary Computation. New York: ACM, 2005: 225-332.

共引文献39

同被引文献20

引证文献2

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部