期刊文献+

基于强度调制的波带片时间透镜研究

Investigation on intensity modulation based temporal zone plate time lens
下载PDF
导出
摘要 为了阐明强度调制波带片型时间透镜(时间强度波带片)中心波长、色散补偿量对输出光脉冲消光比、脉冲宽度等性能的影响机理,得到中心波长与焦距色散补偿量的定量理论关系,对时间强度波带片进行了建模和仿真研究。仿真研究结果表明:时间强度波带片的焦距色散补偿量与中心波长在1 310-1 550nm范围呈近似线性关系。对于不同波长,通过拟合公式可以得到焦距色散补偿量以实现最优消光比光脉冲输出。通过时间强度和相位波带片性能对比,讨论了2种波带片型时间透镜在实际应用中的相对优势。研究结论可以为设计和优化时间强度波带片以及拓展新型时间透镜器件的设计和应用提供理论指导和技术参考。 In order to illuminate the influences of central wavelength and dispersion compensation on output pulse extinction ratio (ER) and FWHM of intensity modulation based temporal zone plate (temporal intensity zone plate) , temporal intensity zone plate wasmodeled and investigated by simulation Then, influences of central wavelength on focal length are quantificationally obtained by simulation There is an approximatively linear relationship between the focal length and central wavelength in the range of 1 310-1 550 nm. By our proposed fitting formula, focal length can be calculated and the optimal output pulse ER can be obtained. The comparison of temporal intensity and phase zone plates were achieved, and advantages of the two different zone plate time lenses for practical applications are discussed. The conclusion can provide theoretical guidance and technical reference for the design and optimization of time intensity zone plate, and expanding the novel time lens devices.
出处 《中国科技论文》 CAS 北大核心 2016年第14期1609-1612,共4页 China Sciencepaper
基金 高等学校博士学科点专项科研基金资助项目(20120009120041)
关键词 时间透镜 时间强度(相位)波带片 时空二元性 色散补偿 焦距 消光比 time lens temporal intensity (phase)zone plate space-time duality dispersion compensation focal length extinction ratio
  • 相关文献

参考文献2

二级参考文献21

  • 1Kolner B. Space -time duality and the theory of temporal imaging [ll. IEEE Journal of Quantum Electronics, 1994, 30: 1951-1963.
  • 2James van Howe, Chris Xu. Ultra -fast optical signal processing based upon space-time dualities [I}. Journal of Lightwave Technology; 2006, 24: 2649-2662.
  • 3Foster M A, Salem R, Geraghty D F, et al. Silicon-chipbased ultra-fast optical oscilloscope [J]. Nature, 2008, 456: 81-84.
  • 4Foster M A, Salem R, Okawachi Y, et al. Ultra -fast waveform compression using a time -domain telescope [J]. Nature Photonics, 2009, 3: 581-585.
  • 5Fontaine N K, Scott R P, Zhou Linjie, et al. Real-time full-field arbitrary optical waveform measurement[J]. Nature Photonics, 2010,4: 248-254.
  • 6David J. Richardson. Silicon photonics: Beating the electronics bottleneck[J]. Nature Photonics, 2009,3: 562-564.
  • 7Jalali B, Solli D R,Gupta S. Silicon's time lens [J]. Nature Photonics, 2009, 3: 8-10.
  • 8Wang K, Freudiger C W, Lee J H, et al. Synchronized time =Iens source for coherent Raman scattering microscopy [J]. Optics Express, 2010, 18: 24019-24024.
  • 9Yanne Kouomou Chembo, Abdelharnid Hmima, PierreAmbroise Lacourt, et al. Generation of ultralow jitter optical pulses using optoelectronic oscillators with time -lens soliton -assisted compression [J]. Journal of Lightwave Technology, 2009, 27: 5160-5167.
  • 10Ke Wang, Chris Xu. Wave length -tunable high -energy soliton pulse generation from a large -mode -area fiber pumped by a time-lens source[J]. Optics Letters, 2001, 36: 942-944.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部