摘要
R是2-扭自由*-素环,J是R的非零*-Jordan理想。F是R的广义导子,其非零伴随导子d与*可交换,对u,v∈J有(i)d(u)oF(v)=[u,v];(ii)[d(u),F(v)]=(uov);(iii)[d(u),F(v)]=uv;(iv)d(u)oF(v)=uv;(v)d(u)F(v)=[u,v];(vi)d(u)F(v)=uov。若F=0或d≠0,则J■Z(R);(vii)若F^2(u)(10)3d^2(u)=2Fd(u)+2d F(u),u∈J,则J■Z(R)。
In the present paper, it is shown that: if R is 2-torsion free ^*-prime ring, J be a nonzero^*-Jordan ideal. F is called a generalized derivation associated with a derivation d. There exists follows: (i) d(u)oF(v)=[u,v];(ii)[d(u),F(v)]=(uov);(iii)[d(u),F(v)]=uv;(iv)d(u)oF(v)=uv;(v)d(u)F(v)=[u,v];(vi)d(u)F(v)=uov.IfF=0ord≠0,then J Z(R); (vii)If F^2(u)+3d^2(u)=2Fd(u),u∈J,then J Z(R)
出处
《唐山师范学院学报》
2016年第5期17-20,共4页
Journal of Tangshan Normal University