摘要
针对BP神经网络的问题与不足,提出小波神经网络电力负荷预测模型。仿真实验结果表明,小波神经网络可根据信号的时频特性进行动态调整,有利于减少权值参数,缩短训练时间,在隐节点数目和所需训练样本等方面都表现出很大的优越性,对于电力负荷预测具有较高的精度,是可行的。
Aiming at the problems and shortages of BP neural network, it proposes a neural network model of power load forecasting based on wavelet neural network. Simulation experimental results show that the wavelet neural networks can be dynamically adjusted by the time-frequency characteristic of signal, and is conducive to reducing the weight parameters, shorten the training time, in the number of hidden nodes. Required training samples showing great superiority for electric power load forecasting with high accuracy, is feasible.
出处
《唐山师范学院学报》
2016年第5期78-80,共3页
Journal of Tangshan Normal University
关键词
小波神经网络
电力负荷
预测
wavelet neural network
power load
forecasting