期刊文献+

深空探测光学导航敏感器在轨几何定标方法 被引量:7

On-orbit Calibration Approach for Optical Navigation Sensor in Deep Space Exploration
下载PDF
导出
摘要 光学导航敏感器是光学自主导航的一个核心器件,它所获得的导航目标源的光线指向的精度将直接影响自主导航的精度。设计了一个分步式的光学导航敏感器在轨几何定标方法,该方法先求解外定标参数,然后在外定标所确定的广义相机坐标系下求解内定标参数,从而完成对内外定标参数的标定。为了在星上计算资源与能力有限的环境下,利用更多的参考星图实现对定标参数的高精度估计,利用逐行法化最小二乘方法估计定标参数。实验表明,通过高精度的在轨几何定标,可以有效提高光学导航敏感器的指向量测精度,使其满足光学自主导航的需求。 Optical navigation sensor is a core instrument in optical autonomous navigation, the accuracy of the direction of light of the navigantion target it acquired will affect the accuracy of autonomous navigation directly. In this paper, a stepwise on- orbit geometric calibration approach for optical navigation sensor is designed. Firstly, the external calibration parameters are solved. Then, the internal calibration parameters are sovled in the general camera coordinate system determined by external calibration. Because the computation source and ability is limited in the satellite, in order to using more star images to achieve estimation of calibration parameters with high accuracy, a line-by-line orthogonalization method based on least square is adopted in calibration parameter estimation. The experiments demonstrates that the on-orbit calibration approach proposed in this paper can improve the pointing accuracy of optical navigation sensor, and make it meet the requirements of optical autonomous navigation.
出处 《深空探测学报》 2016年第3期228-236,共9页 Journal Of Deep Space Exploration
基金 国家重点基础研究发展计划(2014CB744201)
关键词 导航敏感器 几何定标 逐行法化 最小二乘 optical navigation sensor geometric calibration line-by-line orthogonalization method least square
  • 相关文献

参考文献16

  • 1Owen Jr V M. Methods of optical navigation[J]. SpaceflightMechanics, 2011, 140: 1635-1654.
  • 2Rebordao J M. Space optical navigation techniques: an overview[C]//8th Ibero American Optics Meeting/11th Latin American Meeting onOptics, Lasers, and Applications. [S. l.]: International Society forOptics and Photonics, 2013.
  • 3Li S, Lu R K, Zhang L, et al. Image processing algorithms for deepspaceautonomous optical navigation[J]. Journal of Navigation,2013, 66 (04) : 605-623.
  • 4Christian J A, Lightsey G E. Onboard image-processing algorithm fora spacecraft optical navigation sensor system[J]. Journal of Spacecraftand Rockets, 2012, 49 (2 ) : 337-352.
  • 5Kawaguchi J I, Hashimoto T, Misu T, et al. An autonomous opticalguidance and navigation around asteroids[J]. Acta Astronautic,1999, 44 (5 ) : 267-280.
  • 6Oberst J, Brinkmann B, Giese B. Geometric calibration of theMICAS CCD sensor on the DS1 (Deep Space One) spacecraft:laboratory vs. in-flight data analysis[C]//International Archives ofPhotogrammetry and Remote Sensing 33.B 1; PART 1: 221230(2 0 0 0 ).
  • 7Samaan M A, Griffith T, Singla P, et al. Autonomous on-orbitcalibration of star trackers[C]// Core Technologies for Space SystemsConference (Communication and Navigation Session), 2001.
  • 8Hong Y Z, Ren G Q, Liu E H, Non-iterative method for cameracalibration[J]. Opt. Express, 2015, 23 (18) : 23992-24003.
  • 9Lin P D, Sung C K. Comparing two new camera calibration methodswith traditional pinhole calibrations[J]. Opt Express, 2007,15 ( 6 ) , 3012-3022.
  • 10Sun T, Xing F, You Z. Optical system error analysis and calibrationmethod of high-accuracy star trackers[J]. Sensors, 2013, 13 (4 ) :4598-4623.

同被引文献82

引证文献7

二级引证文献41

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部