期刊文献+

界面预制:一种高效生成原子模型的方法 被引量:1

Pre-Constructed Interface: an Easy Approach for Generating Nano-Scale-Device Atomistic Models
下载PDF
导出
摘要 针对用于微电子元器件性能仿真的纳米尺度模型含有大量原子,直接对其进行编辑较为复杂的问题,在总结原子模型几何特征的基础上,提出一种新的建模方法.该方法预先将各种材料和不同材料间的界面设计成预制结构;在建模时,用户只需创建若干基本的图元,再选择各图元相应材料并将它们组合成一个复合图元;依据复合图元的材料信息选择合适的界面预制结构,最终生成设计器件的原子模型.用户调查结果表明,与现有建模方法比较,文中建模方法更为简便和高效. In the simulation of nano-scale electronic devices, molecular models contain lots of atoms. It is difficult to edit a model with so many atoms. When a model consists of two or more different materials, editing the interfaces is even harder. Based on the geometry features of general device models being used for simulation, a new model construction method is proposed. It is based on the pre-constructed structures of different materials and the corresponding interfaces. In the design process, users only need to generate simple graphic objects, assign material properties and combine them to form a single object. Based on these graphic objects, together with the corresponding material information, the proposed method can select suitable pre-constructed interfaces to generate required models. According to the results from the user study, the new method is more efficient than current modeling methods.
出处 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2016年第10期1622-1629,共8页 Journal of Computer-Aided Design & Computer Graphics
基金 国家自然科学基金项目(61272019) 香港研究基金委员会项目(AOE/P-04/08) 中央高校基本科研业务费专项资助基金项目(JZ2016HGBZ0752)
关键词 计算机辅助建模 纳米元器件模型 原子模型编辑 computer aided modeling nano-scale devices editing atomistic model
  • 相关文献

参考文献18

  • 1Kim D M, Khondker A N, Ahmed S S, et al. Theory of conductionin polysilicon: drift-diffusion approach in crystallineamorphous-crystalline semiconductor system Part I: small signaltheory[J]. IEEE Transactions on Electron Devices, 1984,31(4): 480-493.
  • 2Green M A. Intrinsic concentration, effective densities of states,and effective mass in silicon[J]. Journal of Applied Physics,1990, 67(6): 2944-2954.
  • 3Vasileska D, Mamaluy D, Khan H R, et al. Semiconductor devicemodeling[J]. Journal of Computational & Theoretical Nanoscience,2008, 5(1): 999-1030.
  • 4胡舒凯,吴俊杰,周海芳,张拥军,方旭东.忆阻器存储研究与展望[J].计算机研究与发展,2012,49(S1):79-84. 被引量:11
  • 5Zhang L N, Zahid F, Zhu Y, et al. First principles simulations ofnanoscale silicon devices with uniaxial strain[J]. IEEE Transactionson Electron Devices, 2013, 60(10): 3527-3533.
  • 6Phillips J C, Braun R, Wang W, et al. Scalable Molecular Dynamicswith NAMD[J]. Journal of Computational Chemistry,2005, 26(16): 1781-1802.
  • 7张繁,王章野,姚建,吴韬,彭群生.应用GPU集群加速计算蛋白质分子场[J].计算机辅助设计与图形学学报,2010,22(3):412-419. 被引量:12
  • 8Sacconi F, Persson M P, Povolotskyi M, et al. Electronic andtransport Properties of silicon nanowire[J]. Journal of ComputationalElectronics, 2007, 6(1): 329-333.
  • 9Pasquarelloa A, Hybertsen M S, Car R. Structurally relaxedmodels of the Si(001)–SiO2 interface[J]. Applied Physics Letters,1996, 68 (5): 625-627.
  • 10van Duin A C T, Strachan A, Stewman S, et al. ReaxFFSiO reactiveforce field for silicon and silicon oxide systems[J]. Journalof Physical Chemistry A, 2003, 107(19): 3803- 3811.

二级参考文献171

共引文献32

同被引文献4

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部