期刊文献+

一类改进的插值基函数 被引量:1

A Kind of Interpolating Basis Functions with Improved Properties
下载PDF
导出
摘要 为了构造具有良好性质的插值基函数用来构造插值曲线与曲面,引入一类具有精确的局部支撑和无穷次可微的函数;将其与sinc函数结合并优化,构造一类相似于插值细分基函数的新基函数,这类新基函数保持了以往基函数的良好性质,并具有以往基函数所不具有的精确局部支撑性的优点.实例结果表明,文中构造的新基函数有很好的效果;与传统的Akima方法相比,所构造的曲线总体上具有较好的光顺性. The main purpose of this work is to develop a kind of interpolating basis functions with good properties for constructing interpolatory curves and surfaces. We first introduce a new class of c?functions with local support. Combined with the sinc function with parameter optimization, we obtain a new kind of interpolating basis functions with similar properties to that of interpolatory subdivision basis functions. Compared with other similar basis functions in the literature, the new basis functions possess exact local support property. The curve example constructed using the new basis shows better visual effect compared with the well-known Akima's method, while other examples constructed by using the new basis exhibit similar visual effect compared with other similar basis functions in the literature.
作者 章仁江 蒋磊
出处 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2016年第10期1639-1643,共5页 Journal of Computer-Aided Design & Computer Graphics
基金 国家自然科学基金(61170100) 浙江工商大学研究生基金(3100XJ1514064)
关键词 基函数 样条 插值 参数曲线 basis function spline interpolation parametric curves
  • 相关文献

参考文献3

二级参考文献14

  • 1邓建松,冯玉瑜.一种平面保凸插值构造光滑曲线的方法[J].高校应用数学学报(A辑),1998,13(B06):1-8. 被引量:3
  • 2HUANGYu WANGGuozhao.Constructing a quasi-Legendre basis based on the C-Bézier basis[J].Progress in Natural Science:Materials International,2005,15(6):559-563. 被引量:5
  • 3Farin C Curves and surfaces for CAGD-A practical guide[M]. 5th ed. New York: Morgan Kanfi-nann Publishers, 2002.
  • 4Schweikert D C An interpolation curve using splines in tension[J] Journal of Mathematics and Physics, 1966, 45:312-317.
  • 5Manni C, Sablonnire P. Monotone interpolation of order 3 by Ca cubic splines[J]. IMA Journal of Numerical Analysis, 1997, 17:305-320.
  • 6Romani L. A circle-preserving C2 Hermite interpolatory subdivision scheme with tension control[J]. Computer Aided Geometric Design, 2010, 27(1): 36-47.
  • 7Dyn N, Levin D, Liu D. Interpolatory convexity-preserving subdivision schemes for curves and surfaces[J]. Computer- Aided Design, 1992, 24(4): 211-216.
  • 8Albrecht G, Romani L. Convexity preserving interpolatory subdivision with conic precision[J]. Applied Mathematics and Computation, 2012, 219:4049-4066.
  • 9Amat S, Donat R, TriUo J C. Proving convexity preserving properties of interpolatory subdivision schemes through reconstruction operators[J]. Applied Mathematics and Computation, 2013, 219:'7413-7421.
  • 10PAN RongJiang,MENG XiangXu,WHANGBO,TaegKeun.Hermite variational implicit surface reconstruction[J].Science in China(Series F),2009,52(2):308-315. 被引量:5

共引文献12

同被引文献6

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部