期刊文献+

基于增量信息索引的子图查询算法 被引量:1

A SUBGRAPH QUERY ALGORITHM BASED ON INCREMENTAL INFORMATION INDEX
下载PDF
导出
摘要 当前图数据库中的子图同构查询算法主要是依赖倒排索引,然而处理那些具有庞大数据的数据库和复杂的查询愈发成为挑战。研究目的是设计一个算法,使用新的索引作为查询处理的核心,记录查询图的每一个细小改变,并使用一种特殊的数据结构来维护。先是引出一个索引算法,然后逐渐分析整个索引、查询过程,并利用该算法实现一个系统,最后在不同数据集和查询上进行实验。实验证明了该算法具有良好的时间、空间效率和扩展性。新的索引算法能够支持更大的查询图和更加灵活的查询。通过实现的系统和其他系统的对比实验,验证了算法的有效性。 Currently subgraph isomorphic query algorithms in graph database mainly depend on inverted index. However, the processing ofthose graph databases with huge data and the complicated queries increasingly becomes a challenge. The purpose of our research is to designan algorithm, we used a new index as the core of query processing, recorded every tiny change in query graph, and maintained it with aspecial data structure. First we introduced an index algorithm, and then gradually analysed the whole process of index and query, and usedthe algorithm to have implemented a system, finally we carried out the experiments on different datasets and queries. This algorithm has beenproved with good time and space productivity and scalability. The new index algorithm is able to support greater query graph and more flexiblequery. Through the implemented comparative experiments between this system and other systems, we verified the efficiency of this algorithm.
出处 《计算机应用与软件》 CSCD 2016年第10期37-40,共4页 Computer Applications and Software
关键词 图数据库 子图同构 片段 子图查询 索引 查询算法 Graph database,Subgraph isomorphism,Fragment,Subgraph query,Index,Query algorithm
  • 相关文献

参考文献10

  • 1Sun Z,Wang H Z,Wang H X,et al.Efficient subgraph matching on billion node graphs[J].Proceedings of the VLDB Endowment,2012,5(9):788-799.
  • 2Garey M R,Johnson D S.Computers and intractability:a guide to the theory of NP-completeness[M].USA:W.H.Freeman and Company,1979.
  • 3Giugno R,Shasha D.Graph Grep:a fast and universal method for querying graphs[C]//Proceedings of the 16th International Conference on Pattern Recognition,Quebec,Canada,2002,2:112-115.
  • 4Zhao P X,Yu J X,Yu P S.Graph indexing:tree+delta>=graph[C]//Proceedings of the 33rd International Conference on Very Large Data Bases,2007:938-949.
  • 5Yan X F,Yu P S,Han J W.Graph indexing:a frequent structure-based approach[C]//Proceedings of the 2004 ACM SIGMOD International Conference on Management of Data,2004:335-346.
  • 6Cheng J,Ke Y P,Ng W,et al.FG-Index:towards verification-free query processing on graph databases[C]//Proceedings of the 2007 ACM SIGMOD International Conference on Management of Data,2007:857-872.
  • 7Canonical form[EB/OL].Wikipedia[2015-03-20].http://en.wikipedia.org/wiki/Canonical_form.
  • 8Jin C,Bhowmick S S,Xiao X K,et al.GBLENDER:towards blending visual query formulation and query processing in graph databases[C]//Proceedings of the 2010 ACM SIGMOD International Conference on Management of Data,2010:111-122.
  • 9Yan X F,Han J W.g Span:graph-based substructure pattern mining[C]//Proceedings of the 2002 IEEE International Conference on Data Mining,2002:721-724.
  • 10Jin C J,Bhowmick S S,Choi B,et al.Prague:towards blending practical visual subgraph query formulation and query processing[C]//Proceedings of the 2012 IEEE 28th International Conference on Data Engineering,2012:222-233.

同被引文献2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部