期刊文献+

寻找Spann序列的方法的改进

IMPROVEMENT IN SEARCHING METHOD OF SPAN N SEQUENCES
下载PDF
导出
摘要 de Bruijn序列是一个周期为2n的0、1序列,去掉n阶de Bruijn序列中连续的n个0中的一个得到一个周期为2~n-1的序列,称为span n序列。一个n阶de Bruijn序列的线性复杂度在2^(n-1)+n和2~n-1之间,然而对应的span n序列的线性复杂度可能降为n。所以span n序列的线性复杂度成为了衡量一个de Bruijn序列好坏的重要标准,因此研究生成高线性复杂度的span n序列的方法是非常有意义的。研究文献[6]中提出的基于特殊函数和非线性反馈移位寄存器寻找span n序列的方法,发现span n序列与参数t的无关性,并基于此提出了几种改进算法。对各种算法进行横向比较,并指出了每种算法的局限和优点,以及今后可能的改进。 de Bruijn sequence is a binary sequence with length 2~n,by removing one zero from consecutive n zero of n-stage de Bruijn sequence,we get a sequence with length 2~n- 1 which is called span n sequence. The linear complexity of an n-stage de Bruijn sequence is between 2^(n-1)+ n and 2~n- 1,but the linear complexity of corresponding span n sequence could drop to n. Because of this,the linear complexity of span n sequence becomes an important property in measuring the quality of de Bruijn sequence,so it is very meaningful to study how to generate span n sequence with high linear complexity. In this article we study the method of searching span n sequence based on special function and non-linear feedback shift register proposed in literature [6],and find that the independency between span n sequence and parameter t,on this basis we propose some improved methods. We also make the horizontal comparison on various algorithms,and point out their pros and cons and the possible improvement in the future.
作者 屈哲 陈克非
出处 《计算机应用与软件》 CSCD 2016年第10期311-316,320,共7页 Computer Applications and Software
关键词 非线性反馈移位寄存器 DE Braijn序列 spann序列 Non-linear feedback shift register de Brujin sequence Span n sequence
  • 相关文献

参考文献11

  • 1e STREAM:the ECRYPT Stream Cipher Project[EB/OL].http://www.ecrypt.eu.org/stream/.
  • 2Dubrova E.A list of maximum-period NLFSRs[R].Cryptology e Print Archive,Report 2012/166(2012).http://eprint.iacr.org/2012/166.
  • 3Rachwalik T,Szmidt J,Wicik R,et al.Generation of Nonlinear Feedback Shift Registers with special-purpose hardware[C]//Communications and Information Systems Conference(MCC),2012 Military,1-4.
  • 4Chan A H,Games R A,Key E L.On the complexities of de Bruijn sequences[J].Journal of Combinatorial Theory,Series A,1982,33(3):233-246.
  • 5Mayhew Gregory L,Solomon W Golomb.Linear spans of modified de Bruijin sequences[J].IEEE transactions on information theory,1990,36(5):1166-1167.
  • 6Mandal K,Gong G.Probabilistic Generation of Good Span n Sequences from Nonlinear Feedback Shift Registers[R].CACR Technical Report(2012).
  • 7No J S,Golomb S W,Gong G,et al.Binary Pseudorandom Sequences of Period 2n-1 with Ideal Autocorrelation[J].IEEE Transactions on Information Theory,1998,44(2):814-817.
  • 8No J S,Chung H,Yun M S.Binary pseudorandom sequences of period2m-1with ideal autocorrelation generated by the polynomial zd+(z+1)d[J].Information Theory,IEEE Transactions on,1998,44(3):1278-1282.
  • 9Dillon J F.Multiplicative difference sets via additive characters[J].Designs,Codes and Cryptography,1999,17(1-3):225-235.
  • 10Dillon J F,Dobbertin H.New cyclic difference sets with Singer parameters[J].Finite Fields and Their Applications,2004,10(3):342-389.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部