摘要
水资源是一种重要的自然资源和经济资源,对其未来的脆弱性进行预测可以预估研究区未来的水安全状况,对其脆弱性问题做出预警,从而及时采取治理措施。因此,合理科学的水资源脆弱性预测研究是缓解水资源脆弱性的有效手段。目前,水资源脆弱性研究主要是针对水资源现状进行评价,对其未来状况的预测较少。集成了粗糙集和BP神经网络两种方法,首先采用改进了的盲目删除法对构建的流域水资源脆弱性评价指标体系进行约简,其次通过BP神经网络拟合约简后的指标数据与脆弱度之间的映射关系,构建流域水资源脆弱性评价预测模型。基于之前研究的样本数据和脆弱性结果,探讨淮河流域未来的水资源脆弱性状况。结果表明:淮河流域2015年、2020年和2025年的水资源脆弱度分别为0.305、0.359和0.390,处于轻度脆弱和中度脆弱的状况,除2015年脆弱性状况有所好转以外,2020年和2025年的水资源脆弱性程度与近几年相比有所加剧,根据指标数据可知该现象主要是受年降水量、人均用水量、万元GDP废水排放量、垦殖指数、有效灌溉面积比和干旱面积受灾比6个指标的影响,为避免水资源脆弱性的加剧,应当有针对性的加强这几个方面的管理和控制。
Water is an important natural and economic resource. Predicting its vulnerability can forecast the water security and give an early warning of its vulnerability in given areas. Therefore, reasonable and scientific water resource vulnerability prediction research is an effective method to alleviate vulnerability. At present, water resource vulnerability studies mainly aimed at evaluating current situation of water resource vulnerability, while there is little work about forecasting. In this paper we combined the rough set and BP neural network to make attribute reduction of the evaluation indices system by using improved data analysis. Then, we established the forecast model by fitting functional relationship between index data and water vulnerability index based on the BP neural network. We discussed on Huaihe Basin's future water resource vulnerability situation based on the previous research. The results showed that, the WVI of Huaihe Basin in2005, 2020 and 2025 were 0.305, 0.359 and 0.390, which were lightly and moderately vulnerable. Except for 2015, the water resource vulnerability in 2020 and 2025 was more seriously compared with recent years. According to the index data we revealed the main causes for this phenomenon to be annual precipitation, water per capita, GDP wastewater discharge,cultivation index, effective irrigation area ratio, and drought area ratio. In order to avoid the increasing water resource vulnerability the relevant departments should strengthen targeted management and control of these aspects.
出处
《长江流域资源与环境》
CAS
CSSCI
CSCD
北大核心
2016年第9期1317-1327,共11页
Resources and Environment in the Yangtze Basin
基金
国家自然基金青年项目"基于奈特不确定性理论的流域水资源脆弱性分析与适应性治理研究"(71403122)
江苏省自然基金青年项目"流域水资源关键脆弱性分析与适应性治理研究"(BK20140980)
教育部人文社科基金青年项目"基于影响因素风险预测的流域水资源脆弱性分析与适应性治理研究"(14YJC630018)~~
关键词
流域水资源
脆弱性预测
粗糙集
BP神经网络
淮河流域
Basin Water Resources
Vulnerability Prediction
Rough Set
BP neural network
Huaihe Basin