期刊文献+

Banach空间中集值隐函数的局部度量正则性和下半连续性

Local Metric Regularity and Lower Semicontinuity of Implicit Multifunction in Banach Spaces
下载PDF
导出
摘要 利用Clarke上导数,在一般Banach空间中研究集值隐函数的稳定性.不仅给出集值隐函数的局部度量正则性成立的条件,还给出集值隐函数的度量正则性、似-Lipschitz性、非空性和下半连续性成立的充分条件. In this paper,we mainly study the stability of implicit multifunction in terms of Clarke coderivative in general Banach spaces.We present new conditions for the local metric regularity of implicit multifunction.We also give sufficient conditions for the metric regularity,the Lipschitz-like property,the nonmptiness and the lower semicontinuity of implicit multifunction.
出处 《西南大学学报(自然科学版)》 CAS CSCD 北大核心 2016年第9期107-115,共9页 Journal of Southwest University(Natural Science Edition)
基金 国家自然科学基金资助项目(11301254) 中国博士后科学基金资助项目(2014M551312) 河南省高等学校重点科研项目(15A110036)
关键词 Clarke次微分 Clarke上导数 集值隐函数 局部度量正则性 Clarke subdifferential Clarke coderivative implicit multifunction local metric regularity
  • 相关文献

参考文献10

  • 1CHIEUN H,YAO J C, YEN N D. Relationships between Robinson Metric Regularity and Lipschitz-Like Behavior ofImplicit Multifunctions [J], Nonlinear Analysis: Theory, Methods and Applications, 2010, 72(9 - 10): 3594 - 3601.
  • 2YEN N D, YAO J C_ Point-Based Sufficient Conditions for Metric Regularity of Implicit Multifunctions [J]_ NonlinearAnalysis: Theory, Methods and Applications, 2009,70(7) : 2806 - 2815.
  • 3ROBINSON S M. Stability Theory for Systems of Inequalities, I. Linear Systems [J]. SIAM Journal on Numerical Anal-ysis, 1975,12(12): 754-769.
  • 4ROBINSON S M. Stability Theory for Systems of Inequalities, II. Differentiable Nonlinear Systems [J]. SIAM Journalon Numerical Analysis, 1976,13(13) ; 497 - 513.
  • 5HUY N Q, KIM D S,NINH K V. Stability of Implicit Multifunctions in Banach Spaces [J]. Journal of OptimizationTheory and Applications, 2012,155(2) . 558 - 571.
  • 6YANG M G,XU Y F. Implicit Multifunction Theorems in Banach Spaces [J]. Journal of Applied Mathematics, 2014,2014: 1 - 7.
  • 7NGHIA T T A. A Note on Implicit Multifunction Theorems [J]. Optimization Letters, 2014,8(1) : 329 - 341.
  • 8ZHENG X Y, NG K F. Metric Subregularity and Calmness for Nonconvex Generalized Equations in Banach Spaces [J].SIAM Journal on Optimization, 2010, 20(5) : 2119 - 2136.
  • 9CLARKE F H. Optimization and Nonsmooth Analysis [M]. New York: Wiley, 1983.
  • 10MORDUKHOVICH B S. Variational Analysis and Generalized Differentiation, Vol. I: Basic Theory [M]. Berlin:Springer,2006.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部