期刊文献+

H-R模型极端顺序统计量密度函数的收敛性

Asymptotics of Density of Extreme Order Statistics on H-R Model
下载PDF
导出
摘要 证明了在Hüsler-Reiss条件下,二维高斯序列极大值分布密度函数的收敛性,进而通过细化Hüsler-Reiss条件建立了此密度函数的高阶展开. In this paper,under Hüsler-Reiss condition the convergence of density of extreme from a bivariate Gaussian triangular arrays was derived.Furthermore,the higher-order expansions of the considered density were established provided that the refined Hüsler-Reiss conditions hold.
出处 《西南大学学报(自然科学版)》 CAS CSCD 北大核心 2016年第9期123-129,共7页 Journal of Southwest University(Natural Science Edition)
基金 国家自然科学基金项目(11171275) 中央高校基本科研业务费专项资金资助项目(XDJK2016E117) 重庆市研究生科研创新项目(CYS16046)
关键词 二维高斯三角阵 密度函数收敛 高阶展开 Hüsler-Reiss条件 bivariate Gaussian triangular array density convergence higher-order expansion Hüsler-Reiss condition
  • 相关文献

参考文献11

  • 1HUSLER J, REISS R D. Maxima of Normal Random Vectors; Between Independence and Complete Dependence [J].Stat Probab Lett, 1989 , 7(4) : 283 - 286.
  • 2HASHORVA E,WENG Z. Limit Laws for Extremes of Dependent Stationary Gaussian Arrays [J]. Statist Probab Lett,2013,83(83) : 320-330.
  • 3LIAO X,PENG Z. Asymptotics for the Maxima and Minima of Hiisler-Reiss Bivariate Gaussian Arrays [J]. Extremes,2014,18(1): 1-14.
  • 4HASHORVA E,PENG Z,WENG Z. Higher-Order Expansions of Distribution of Maxima in a Hiisler-Reiss Model [J].Methodol Comput Appl Probab, 2016,18(1) : 181 - 196.
  • 5HASHORVA E. Elliptical Triangular Arrays in the Max-Domain of Attraction of Hiisler-Reiss Distribution [J]. StatProbab Lett, 2005,72(2) : 125 - 135.
  • 6HASHORVA E. On the Max-Domain of Attractions of Bivariate Elliptical Arrays [J]. Extremes, 2006,8(3):225-233.
  • 7LIAO X, PENG Z. Convergence Rate of Maxima of Bivariate Gaussian Arrays to the Hlisler-Reiss Distribution [J]. Sta-tistics and Its Interface, 2014, 7(3) : 351 - 362.
  • 8FRICK M, REISS R D. Expansions and Penultimate Distributions of Maxima of Bivariate Normal Random Vectors [J].Statist Probab Lett, 2013,83(11) : 2563 - 2568.
  • 9LIAO Xin,PENG Liang,PENG ZuoXiang,ZHENG YanTing.Dynamic bivariate normal copula[J].Science China Mathematics,2016,59(5):955-976. 被引量:3
  • 10杨红艳,彭作祥.有限混合偏正态极值的极限分布[J].西南大学学报(自然科学版),2014,36(3):59-62. 被引量:5

二级参考文献21

  • 1凌成秀,彭作祥.属于同一吸引场的分布函数尾等价的充要条件[J].西南师范大学学报(自然科学版),2005,30(1):18-21. 被引量:3
  • 2Helmut Finner,Thorsten Dickhaus,Markus Roters.Asymptotic Tail Properties of Student’s t-Distribution[J].Communications in Statistics - Theory and Methods.2008(2)
  • 3Andrew P. Soms.Bounds for the t-tail area[J].Communications in Statistics - Simulation and Computation.1983(5)
  • 4Benth F E, Kettler P C. Dynamic copula models for the spark spread. Quant Finance, 2011, 11:407-421.
  • 5Channouf N, L'Ecuyer P. A normal copula model for the arrival process in a call center. Int Trans Oper Res, 2012, 19:771 787.
  • 6Fan J, Gijbels I. Local Polynomial Modelling and Its Applications. New York: Chapman & Hall, 1996.
  • 7Frick M, Reiss R-D. Expansions and penultimate distributions of maxima of bivariate normal random vectors. Statist Probab Lett, 2013, 83:2563-2568.
  • 8Fung T, Seneta E. The bivariate normal copula function is regularly varying. Statist Probab Lett, 2011, 81:1670-1676.
  • 9Cu~gan D, Zhang J. Change analysis of a dynamic copula for measuring dependence in multivariate financial data. Quant Finance, 2010, 10:421 430.
  • 10Hall P, Heyde C C. Martingale Limit Theory and Its Application. New York: Academic Press, 1980.

共引文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部