期刊文献+

锯齿形石墨烯纳米带特性的理论研究 被引量:1

The Theoretical Research on Characteristics of Zigzag Graphene Nanoribbons
下载PDF
导出
摘要 对具有一定宽度的锯齿形石墨烯纳米带用对角化其哈密顿的方法自洽地计算了电子在半填满的情况下石墨烯的性质,结果发现:锯齿形石墨烯带在相同条件下两边之间是铁磁耦合还是反铁磁耦合是随机的.两边之间呈现反铁磁序时,石墨烯带是半导体,其带隙具有量子限制效应;呈现铁磁序时,石墨烯带是导体.无论哪一种情况,石墨烯带边缘原子的磁序都是一个定值,并不随系统大小而变化,这就为石墨烯作为自旋电子学的材料提供了一个无比优越的条件. The properties of zigzag edges of graphene nanoribbons with different widths are self- consistently calculated by the method of diagonalizing the hamiltonian. The results show that appearance of ferromagnetism or antiferromagnetism in two edges of the nanoribbon is random at the same condition. The ribbons is semiconductor and the band gap has a quantum confinement effect with the appearance of antiferromagnetic order between the two sides. The ribbons is con- ductor with the appearance of ferromagnetic order. In either case, the magnetic order of atoms along edges is a constant value, and it does not change with the size of system. All of these provide an incomparably superior condition for taking graphene as the material of spintronics.
出处 《西安文理学院学报(自然科学版)》 2016年第5期1-6,共6页 Journal of Xi’an University(Natural Science Edition)
基金 国家自然科学基金(51374130)资助课题
关键词 石墨烯 磁序 自洽计算 graphene magnetic order self-consistent calculation
  • 相关文献

参考文献13

  • 1NOVOSELOV K S,GEIM A K, MOROZOV S V, et al. Electric field effect in atomically thin carbon films [ J ]. Science, 2004,306 (5696) :666 - 669.
  • 2FUJITA M, WAKABAYASHI K, NAKADA K, et al. Peculiar localized state at zigzag graphite edge [ J ]. Journal of the Phys- ical Society of Japan,1996,65 (7) :1920 - 1923.
  • 3KAN E J,XIANG H J,YANG J, et al. Electronic structure of atomic Ti chains on semiconductinggraphene nanoribbons: a first-principles study[ J]. The Joumal of Chemical Physics ,2007,127 (16) : 164706.
  • 4SON Y W, COHEN M L, LOUIE S G. Energy gaps ingraphene nanoribbons [ J ]. Physical Review Letters,2006,97 (21) : 216803.
  • 5NAKADA K, FUJITA M, DRESSELHAUS G, et al. Edge state in graphene ribbons:Nanometer size effect and edge shape dependence [ J ]. Physical Review B, 1996,54 (24) : 17954 - 17961.
  • 6KAN E, LI Z, YANG J. Magnetism ingraphene systems [ J ]. Nano,2008,3 (6) :433 - 442.
  • 7ENOKI T,TAKAI K. The edge state of nanographene and the magnetism of the edge-state spins [ J ]. Solid State Communi- cations,2009,149 (27) : 1144 - 1150.
  • 8SON Y W, COHEN M L, LOUIE S G. Half-metallicgraphene nanoribbons [ J ]. Nature,2006,444 (7117 ) :347 -349.
  • 9JUNG J, MACDONALD A H. Cartier density and magnetism ingraphene zigzag nanoribbons[ J]. Physical Review B,2009, 79 (23) :235433.
  • 10GOLOR M, LANG T C, WESSEL S. Quantum Monte Carlo studies of edge magnetism in chiral graphene nanoribbons [ J ]. Physical Review B,2013,87 ( 15 ) : 155441.

同被引文献7

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部