期刊文献+

多介质流动问题的高精度正保护数值模拟方法

The High-order Accuracy Positivity-preserving Numerical Method for Multi-media Flow Problems
下载PDF
导出
摘要 将高精度RKDG(Runge-Kutta Discontinuous Galerkin)正保护格式推广应用于多介质流动问题的数值模拟.通过近似求解双激波Riemann问题来得到界面处流体的流动状态,证明了Riemann问题解的正保护性质,利用RGFM(Real Ghost Fluid Method)界面处理方法定义界面边界条件,将多介质问题转化为单介质问题进行计算,得到一维多介质流动问题的高精度RKDG(Runge-Kutta Discontinuous Galerkin)正保护数值模拟方法.对多个一维问题进行数值模拟,数值结果表明文中所给出的正保护算法,能准确捕捉界面和其他间断的位置. The positivity preserving high order RKDG (Runge-Kutta Discontinuous Galerkin) method is extended to the simulation of one-dimensional multi-medium flow problem. The fluid states at the interface are obtained by solving the double shock Riemann problem approximate- ly. The positivity preserving property of the solution of the Riemann problem is proved. The in- terface processing method named RGFM (Real Ghost Fluid Method) is used to define the boundary conditions, and the multi-medium problem is transformed into a single media problem to calculate. Therefore, the high-order positivity-preserving numerical method for one dimen- sional multi medium flow problem is obtained. Numerical simulation of a number of one-dimen- sional problems are carried out, and the results show that the proposed algorithm can accurately capture the location of the interface and other discontinuities.
作者 黄凯
出处 《西安文理学院学报(自然科学版)》 2016年第5期16-20,25,共6页 Journal of Xi’an University(Natural Science Edition)
关键词 RKDG方法 正保护限制器 RGFM方法 高精度 RKDG ( Runge-Kutta Discontinuous Galerkin) method the positivity-preservinglimiter RGFM (Real Ghost Fluid Method) high order accuracy
  • 相关文献

参考文献8

  • 1COCKBURN B, SHU C W. The runge-kutta local projection pl-discontinuous Galerkin finite element method for scalar con- servation laws[ J]. Mathematical Modelling and Numerical Analysis ( M2AN), 1991,25 ( 3 ) :337 - 361.
  • 2COCKBURN B, HOU S, SHU C W. The Runge-Kutta local projection discontinuous Galerkin finite element method for con- servation laws IV : the multidimensional case [ J ]. Mathematics of Computation, 1990,54 (190) : 545 - 581.
  • 3ZHANG X,SHU C W. Positivity-preserving high order finite difference WENO schemes for compressible Euler equations [ J]. Journal of Computational Physics ,2012,231 ( 5 ) :2245 - 2258.
  • 4ZHANG X, SHU C W. On positivity preserving high order discontinuous Galerkin schemes for compressible Euler equations on rectangular meshes [ J ]. Journal of Computational Physics, 2010,229 ( 23 ) : 8918 - 8934.
  • 5CHENG J, SHU C W. Positivity-preserving Lagrangian scheme for multi-material compressible flow[ J ]. Journal of Compu- tational Physics ,2014,257 : 143 - 168.
  • 6FEDKIW R P, ASLAM T, MERRIMAN B. A non-oscillatory Eulerian approach to interfaces in muhimaterial flows [ J ]. Journal of computational physics, 1999,152 (2) :457 - 492.
  • 7WANG C W, LIU T G, KHOO B C. A real-ghost fluid method for the simulation of multi-medium compressible flow [ J ]. SI- AM Journal on Scientific Computing ,2006,28 (1) :278 -302.
  • 8WANG C W, SHU C W. An interface treating technique for compressible muhi-medium flow with Runge-Kutta discontinu- ous Galerkin method [ J ]. Journal of Computational Physics,2010,229 (23) : 8823 - 8843.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部