期刊文献+

基于Spark的云数据中心性能异常实时检测方法

Real Time Detection Method of Cloud Data Center Performance Anomaly Based on Spark
下载PDF
导出
摘要 针对当前云计算环境下数据中心性能异常检测方法的实时性、可扩展性问题,提出一种云数据中心环境下基于Spark的性能异常实时检测方法Spark—ADOPD(Spark-based Anomaly Detection OverPerformance DataInRealtime).方法设计基于Spark的分布式、可扩展流数据聚类算法对采集的云数据中心性能数据进行自动分类,建立性能异常预测模型;定义相似度函数,通过计算持续到达的性能数据与预测模型的相似度,挖掘性能异常行为,以动态调整资源分配.实验结果证明Spark-ADOPD具有较好的实时性和准确性. In view of the real - time performance and scalability problems of data center performance anomaly detec- tion method in cloud computing environment, in this paper, the author proposes a real time detection method based on Spark in the cloud data center environment, that is Spark - ADOPD ( Spark - based Anomaly Detection Over Per- formance Data In Real -time). The method is designed based on Spark, which can automatically classify the per- formance data collected by the data clustering algorithm, to establish a performance anomaly prediction model. The similarity function is defined, by calculating the similarity between the performance data and the prediction model of continuous arrival, excavating performance behavior, to dynamically adjust the allocation of resources. The experimental results show that Spark -ADOPD has better real -time performance and accuracy.
作者 蔡斌雷 郭芹
出处 《西安职业技术学院学报》 2016年第3期1-5,19,共6页 Research on Vocational Education in Xi'an Vocational and Technical College
基金 本文系2014年度山东省科技发展计划资助项目“智能交通大数据实时计算关键技术研究及应用”(项目编号:2014GGX101013) 2015年度山东省重点研发计划资助项目“基于大数据实时计算方法的交通流在线知识发现关键技术研究”(项目编号:2015GGX101032)阶段性成果.
关键词 异常检测 流数据聚类 SPARK 资源调度 云数据中心 anomaly detection stream data clustering Spark resource scheduling cloud data center
  • 相关文献

参考文献3

  • 1Asami Y,Mozaffari S P.A novel unsupervised classification approach for network anomaly detection by k-means clustering and ID3 decision tree learning method[J].ACM Journal of Supercomputing,2010(11):231-245.
  • 2周亚建,徐晨,李继国.基于改进CURE聚类算法的无监督异常检测方法[J].通信学报,2010,31(7):18-23. 被引量:22
  • 3Park N H,Oh S H,Lee W S.Anomaly intrusion detection by clustering transactional audit streams in a host computer[J].Information Sciences,2010(12):2375-2389.

二级参考文献14

  • 1高能,冯登国,向继.一种基于数据挖掘的拒绝服务攻击检测技术[J].计算机学报,2006,29(6):944-951. 被引量:44
  • 2ANDERSON J P.Computer Security Threat Monitoring and Surveillance[R].James P Anderson Co,Fort Washington,Pennsylvania,1980.
  • 3PORTNOY L,ESKIN E,STOLFO S J.Intrusion detection with unlabeled data using clustering[A].Proceedings of ACM CSS Workshop on Data Mining Applied to Security (DMSA2001)[C].Philadelphia,2001.5-8.
  • 4JIANG S Y,SONG X,WANG H,et al.A clustering-based method for unsupervised intrusion detections[J].Pattern Recognition Letters,2006,27(7):802-810.
  • 5ESKIN E,ARNOLD A,PRERAU M,et al.A geometric framework for unsupervised anomaly detection:detecting intrusions in unlabeled data[A].Applications of Data Mining in Computer Security[C].Boston,2002.78-99.
  • 6OLDMEADOW J,RAVINUTALA S,LECKIE C.Adaptive clustering for network intrusion detection[A].Advances in Knowledge Discovery and Data Mining[C].Heidelberg,2004.255-259.
  • 7LEUNG K,LECKIE C.Unsupervised anomaly detection in network intrusion detection using clusters[A].Proceedings of the Twenty-Eighth Australasian Computer Science Conference[C].Sydney,2005.333-342.
  • 8ZANERO S,SAVARESI S M.Unsupervised learning techniques for an intrusion detection system[A].Proceedings of the 2004 ACM Symposium on Applied Computing[C].New York,2004.412-419.
  • 9LUO M,WANG L,ZHANG H,et al.A research on intrusion detection based on unsupervised clustering and support vector machine[A].Information and Communications Security[C].Heidelberg,2003.325-336.
  • 10GUHA S,RASTOGI R,SHIM S.CURE:an efficient clustering algorithm for large databases[A].Proceedings of the 1998 ACM SIGMOD International Conference on Management of Data[C].New York,1998.73-84.

共引文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部