期刊文献+

miR164a及其靶基因PeNAC1相互作用研究 被引量:6

Interaction between miR164a and its target Pe NAC1
原文传递
导出
摘要 miRNA参与了生物体重要的基因表达调控过程,其中miR164通过对标靶NAC(NAM/ATAF/CUC)基因家族的精细调控,在植物激素信号传导、生长发育以及胁迫应答中起着重要作用。为了验证杨树中miR164a和其预测靶基因Pe NAC1间是否也存在这一相互作用,笔者采用PCR技术克隆了毛果杨(Populus trichocarpa)miR164a的前体序列Ptc-MIR164a,并通过RNA fold(http://rna.tbi.univie.ac.at/)在线软件对其进行了miRNA二级结构分析。结果表明:该序列能形成典型的二级茎环结构,预示其在细胞内能被加工为成熟的miR164a。进一步借鉴动物细胞miRNA研究中荧光素酶报告基因法,利用高效的杨树原生质体瞬时表达体系,验证了PtcMIR164a对其预测靶基因Pe NAC1的标靶作用;同时,也建立了一种比较简单、直观的植物miRNA靶标基因的鉴定方法。 miRNA plays a central role in gene regulations. Many research showed that miR164a targets NAG( NAM/AT-AF/CUC) genes involved in multiple biological functions, such as plant development, hormones singal transduction and environmental stimuli. To confirm the interaction between micro164a and its predicted target gene PeNAC1 in poplar, the pre-micro164a sequence was cloned from P. trichocarpa genome DNA by PCR, named Ptc-MIR164a. And according to the results of secondary structure analyses with RNA fold (http ://rna.tbi.univie.ac.at/) , Ptc-MIR164a can form a typical stem-loop structure that suggests it can be processed into mature miRNA164a in vivo. Then combining the principle of luciferase reporter plasmids used in miRNA target detection in animal cell and the transient expression system of poplar protoplasts, we confirmed the interaction between Ptc-MIR164a and PeNAC1 and established a simple and intuitive method for miRNA target detection in plant cell.
出处 《南京林业大学学报(自然科学版)》 CAS CSCD 北大核心 2016年第5期29-33,共5页 Journal of Nanjing Forestry University:Natural Sciences Edition
基金 国家林业公益性行业科研专项青年项目(20134111) 国家自然科学基金青年项目(31200507) 江苏高校优势学科建设工程资助项目(PAPD)
关键词 miR164a Ptc-MIR164a PE NAC1 靶标基因 毛果杨 miR164a Ptc-MIR164a PeNAC1 target gene Populus trichocarpa
  • 相关文献

参考文献17

  • 1Reinhart B J, Weinstein E G, Rhoades M W, et al. MicroRNAs in plants[J~. Genes Dev, 2002, 16( 13): 1616-1626.
  • 2Chen X. MicroRNA biogenesis and function in plants[ J]. FEBS Lett, 2005, 579 (26) : 5923-5931.
  • 3Jones-Rhoades M W, Bartel D P, Bartel B. MicroRNAS and their regulatory roles in plants [ J 1. Annu Rev Plant Biol, 2006, 57 :19-53.
  • 4Mallory A C, Vaueheret H. Functions of microRNAs and related small RNAs in plantsE Jl. Nat Genet, 2006, 38(S): 31-36.
  • 5Simon S A, Meyers B C. Small RNA-mediated epigenetic modifi- cations in plants~ J]. Curr Opin Plant Biol, 2011, 14(2) : 148- 155.
  • 6I V616czi A, V6rallyay E, Kauppinen S, et al. Spatio-temporal ac- cumulation of mieroRNAs is highly coordinated in developing plant tissues ~ J 1. Plant J, 2006, 47 ( 1 ) : 140- 151.
  • 7Guo H S, Xie Q, Fei J F, et al. MicroRNA directs mRNA cleav- age of the transcription factor NAC1 to downregulate auxin signals for Arabidopsis lateral root development I J ]. Plant Cell, 2005, 17 : 1376-1386.
  • 8Mallory A C, Dugas D V, Barrel D P, et al. MicroRNA regulation of NAC-domain targets is required for proper formation and separation of adjacent embryonic, vegetative, and floral organs[J]. Curr Biol, 2004, 14: 1035- 1046.
  • 9Mao W, Li Z, Xia X, et al. A combined approach of high- throughput sequencing and degradome analysis reveals tissue spe- cific expression of microRNAs and their targets in cucumber[ J ]. PLoS One, 2012, 7 ( 3 ) : e33040.
  • 10Lee J Y, Kim S, Hwang D W, et al. Development of a Dual-lu- ciferase reporter system for in vivo visualization of microRNA bio- genesis and posttranscriptional regulation[ J]. J Nucl Med. 2008, 49 (2) : 285-294.

二级参考文献18

  • 1Tingting Du Phillip D Zamore.Beginning to understand microRNA function[J].Cell Research,2007,17(8):661-663. 被引量:20
  • 2Saner E, Houwelingen A, Kloos D, et al. The no apical meristem gene of petunia is required for pattern formation in embryos and flowers and is expressed at meristem and primordial boundaries[J].Cell, 1996, 85(2): 159-170.
  • 3Aida M, Ishida T, Fukaki H, et al. Genes involved in organ sep- aration in Arabidopsis, analysis of the cup2 shaped cotyledon mu- tam [J] .The Plant Cell, 1997, 9(6) : 841-857.
  • 4Riechmann J L, Heard J, Martin G, et al. Arabidopsis transcription factors: genome wide comparative analysis among eukaryotes [ J ].Science, 2000, 290 ( 5499 ) : 2105- 2110.
  • 5Ooka H, Satoh K, Doi K, et al. Comprehensive analysis of NAC family genes in Oryza sativa and Arabidopsis thaliana [ J ]. DNA Res ,2003,10(6) :239-247.
  • 6Wang N, Zheng Y, Xin H, et al. Comprehensive analysis of NAC domain transcription factor gene family in Vitis vinifera [ J ]. Plant Cell Rep,2013,32( 1 ) :61-75.
  • 7Hu R, Qi G, Kong Y, et al. Comprehensive analysis of NAC do- main transcription factor gene family in Populus trichocarpa [ J ]. BMC Plant Biol,2010,10( 1 ) : 145.
  • 8Nuruzzaman M, Sharoni A M, Satoh K, et al. Comprehensive gene expression analysis of the NAC gene family under normal growth conditions, hormone treatment, and drought stress condi- tions in rice using near-isogenic lines (NILs) generated from crossing Aday Selection ( drought tolerant) and IR64 [ J ]. Mol Genet Genomics, 2012, 287 ( 5 ) : 389- 394.
  • 9Xie Q, Frugis G, Colgan D, et al. Arabidopsis NAC1 transduces auxin signal downstream of TIR1 to promote lateral root develop- ment [ J ].Genes & Development, 2000, 14 (23) : 3024- 3036.
  • 10Guo, H S, Xie Q, Fei J F,et al. MicroRNA directs mRNA cleav- age of the transcription factor NAC1 to downregulate auxin signals for Arabidopsis lateral root development [ J ]. The Plant Cell, 2005,17(5) : 1376-1386.

共引文献6

同被引文献45

引证文献6

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部