期刊文献+

选择利用Wishart和K统计描述的极化SAR图像分割 被引量:5

Segmentation of Polarimetric SAR Images Selectively Using Wishart and K Statistical Description
下载PDF
导出
摘要 为得到极化SAR图像中不同异质程度区域的准确分割,本文提出一种选择利用Wishart和K统计描述的极化SAR图像分割方法。该方法采用分形网络演化算法思想,将简单线性迭代聚类算法生成的超像素作为初始对象;再根据区域异质度指标,选择利用Wishart分布或K分布描述对象的统计相似性;最终实现综合利用Wishart和K统计描述的极化SAR图像分形网络演化分割。通过模拟数据和真实极化数据进行实验并与其它方法相比较,结果表明,本文方法在整体上能准确分割不同异质程度的地物,在局部细节上分割结果边界更精细。 To obtain accurate segmentation of polarimetric SAR images in different heterogeneity areas, a new segmentation method is proposed in this paper which selectively uses Wishart and K statistical description based on the fractal network evolution algorithm (FNEA). Specifically, initial objects are derived by using superpixels efficiently generated by simple linear iterative clustering (SLIC) algorithm. Similarity criterion between adjacent objects is defined by Wishart and K distribution depending on the regional heterogeneity index. Then the segmentation procedure for polarimetric data is realized, which makes full use of Wishart and K statistical description. Moreover, simulated data and real data are used to verify the effectiveness of the proposed method. The experiment result shows it can accurately segment different heterogeneity areas on the whole and get more precise boundary in the local details compared with other algorithms.
出处 《电子科技大学学报》 EI CAS CSCD 北大核心 2016年第5期713-719,共7页 Journal of University of Electronic Science and Technology of China
基金 国家自然科学基金(41471355 41301477)
关键词 分形网络演化算法 图像分割 K分布 极化SAR WISHART分布 fractal network evolution algorithm(FNEA) image segmentation K distribution polarimetric SAR Wishart distribution
  • 相关文献

参考文献18

  • 1CAO F, HONG W, WU Y R, et al. An unsupervised segmentation with an adaptive number of clusters using the SPAN/H/a/A space and the complex Wishart clustering for fully polarimetric SAR data analysis[J]. IEEE Transactions on Geoscience and Remote Sensing, 2007, 45(11): 3454-3467.
  • 2吴永辉,计科峰,李禹,郁文贤.基于Wishart分布和MRF的多视全极化SAR图像分割[J].电子学报,2007,35(12):2302-2306. 被引量:13
  • 3Y1N J J, YANG J. A modified level set approach for segmentation of multiband polarimetric SAR images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(11): 7222-7232.
  • 4BOMBRUN L, VASILE G, GAY M, et al. Hierarchical segmentation of polarimetric SAR images using heterogeneous clutter models[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(2): 726-737.
  • 5DOULGERIS A P, ANFINSEN S N, ELTOFT T. Automated non-gaussian clustering of polarimetric synthetic aperture radar images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(10): 3665-3676.
  • 6BEAULIEU J M, TOUZI R. Segmentation of textured polarimetric SAR scenes by likelihood approximation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2004, 42(10): 2063-2072.
  • 7陈启浩,刘修国,陈奇.一种综合多特征的全极化SAR图像分割方法[J].武汉大学学报(信息科学版),2014,39(12):1419-1424. 被引量:5
  • 8BENZ U, POTTIER E. Object based analysis of polarimelric SAR data in alpha-entropy-anisotropy decomposition using fuzzy classification by eeognition[C]//Geoscience and Remote Sensing Symposium. Sydney, NSW: IEEE, 2001: 1427- 1429.
  • 9GAO H, YANG K, JIA Y. Segmentation of polarimetric SAR image using object-oriented strategy[C]//Remote Sensing, 2nd International Conference on Environment and Transportation Engineering (RSETE). Nanjing, China: IEEE Computer Society, 2012: 1-5.
  • 10QI Zhi-xin, ANTHONY G Y, LI X, et al. A novel algorithm for land use and land cover classification using Radarsat-2 polarimetric SAR data[J]. Remote Sensing of Environment, 2012, 118(2012): 21-39.

二级参考文献24

  • 1章毓晋.图像分割[M].北京:科学出版社,2001..
  • 2Lee J S, Hoppel K W, Mango S A, et al. Intensity and phase statistics of multilook polarimetric and interferometric SAR imagery[ J] .IEEE Trans on Geoscience and Remote Sensing, 1994,32 (5) :1017 - 1028.
  • 3Geman S, Geman D. Stochastic relaxation, Gibbs distribution and the Bayesian restoration of images[ J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 1984,6:721 - 741.
  • 4Kottke D P,Fiore P D,Brown K L,et al.A design for HMMbased SAR ATR[ A]. SPIE Conference on Algorithms for Synthetic Aperture Radar Imagery V[C]. Orlando, Florida, USA: SPIE Press, 1998.541 - 551.
  • 5Lee J S,Grunes M R,Ainsworth T L,et al. Unsupervised classification using polarimetric decomposition and the complex Wishart classifier [ J ]. IEEE Trans on Geoscience and Remote Sensing, 1999,37(5) :2249 - 2258.
  • 6Hoekman D H,Vissers M A M. A new polafimellic classification approach evaluated for agricultural crops [ J ]. IEEE Trans on Geoscience and Retrain Sensing,Z303,41(12) :2881-2889.
  • 7Rignot E, Chellappa R. Segmentation of polarimetric synthetic aperture radar data[J]. IEEE Trans on Image Processing, 1992, 1 (3) :281 - 300.
  • 8Tran T N, Wehrens R, Hoekman D H, et al. Initialization of Markov random field clustering of large remote sensing images [J]. IEEE Trans on Geoscience and Remote Sensing,2005,43(8):1912 - 1919.
  • 9Touzi R, Charbonneau F. Characterization of target symmetric scattering using polarimetric SARs [ J ]. IEEE Trans on Geoscience and Remote Sensing,2002,40 (11):2507- 2516.
  • 10De Grandi G F, Hoekman D. A wavelet mulfiresolution technique for polarimetric texture analysis and segmentation of SAR images[ A ]. Proc. IEEE International Geoscience and Remote Sensing Symposium [ C ]. Anchorage, Alaska, USA: IEEE Press, 2004.710- 713.

共引文献16

同被引文献57

引证文献5

二级引证文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部