期刊文献+

测量不确定度估计的极限费舍尔信息方法 被引量:2

Extreme Fisher Information Approach for Measurement Uncertainty Evaluation
下载PDF
导出
摘要 极限费舍尔信息(EFI)是源于极限物理信息理论下的一种信息测度。由于在测量实践中,很难一一准确且高效地定义与补偿所有影响测量结果的因素并估计测量不确定度。因此,该文提出了采用根据EFI推导的概率密度函数(PDFs)来估计被测量的测试边界信息,即待测系统的测量不确定度。该方法能够根据不同的不确定度影响因素以及待测系统的物理规则更加动态地刻画测量不确定性。从物理应用角度进行了详细的数理推导与讨论,相比不考虑物理意义的数学模型,该方法更适用于实际应用。最后,用两组实例验证了该EFI方法的有效性。 The extreme Fisher information (EFI) is originally a measure within the theory of extreme physical information (EPI). In measurement activities, it is hard to accurately and efficiently identify and compensate every effect in measurement and evaluate the incompleteness of the measurement results. So we propose to employ the probability density functions (PDFs) derived from the EFI for estimating the boundary information of the measurement results, that is, the associated measurement uncertainty. The proposed method can characterize the measurement uncertainty more dynamically, with considering the different behaviors of the uncertainty effects and the law governing the system under measurement at the same time. The proposed approach yields the possible distribution of the measurement result in a more practical way rather than the pure mathematical approach, which is more applicable. Finally, the effectiveness of the proposed EFI method is demonstrated by the numerical results of two practical instances.
出处 《电子科技大学学报》 EI CAS CSCD 北大核心 2016年第5期778-784,共7页 Journal of University of Electronic Science and Technology of China
基金 国家自然科学基金(60871056 61371049) 高等学校博士学科点专项科研基金(20120185110013) 中央高校基本科研业务费专项资金(267ZYGX2015KYQD021) 四川应用基础研究项目(2013JY0058)
关键词 极限Fisher信息 信息论 测量不确定度 参数估计 可靠性 extreme Fisher information (EFI) information theory measurement uncertainty parameterestimation reliability
  • 相关文献

参考文献27

  • 1FERRERO A, SALICONE S. Modeling and processing measurment uncertainty within the theory of evidence: Mathematics of random-fuzzy variables[J]. IEEE Transactions on Instrument and Measurement, 2007, 56(3): 704-716.
  • 2BIPM, IEC, IFCC, et al. Evaluation of measurement data-guide to the expression of uncertainty in measurement JCGM 100: 2008[EB/OL]. [2015-03-15]. http://www, bipm. org/utils/common/documents/jcgrrg.JCGM 100 2008_E.pdf.
  • 3BIPM, IEC, IFCC, et al. International vocabulary of metrology-basic and general concepts and associated terms (VIM) JCGM 200: 2008[EB/OL]. [2015-03-201. http:// www. bipm.org/en/publications/guides/vim.html.
  • 4MAURIS G, BERRAH L, FOULLOY L, et al. Fuzzy handling of measurement errors in instrumentation[J]. IEEE Transactions on Instrument and Measurement, 2000, 49(1): 89-93.
  • 5MAURIS G, LASSERRE V, FOULLO L. A fuzzy approach for the expression of uncertainty in measurement [J]. Measurement, 2001, 29(3): 165-177.
  • 6URBANSKY M, WASOWSKI J. Fuzzy approach to the theory of measurement inexactness[J]. Measurement, 2003, 34(1): 67-74.
  • 7FERRERO A, SALICONE S. The random-fuzzy variables: a new approach to the expression of uncertainty in measurement[J]. IEEE Transactions on Instrument and Measurement, 2004, 53(5): 1370-1377.
  • 8FERRERO A, RAMBA R, SALICONE S. A method based on random fuzzy variables for on-line estimation of the measurement uncertainty of DSP-based instntrnents[J]. IEEE Transactions on Instrument and Measurement, 2009, 53(5): 1362-1369.
  • 9FERRERO A, SALICONE S. The construction of random- fuzzy variables from the available relevant metrologieal information[J]. IEEE Transactions on Instrument and Measurement, 2009, 58(2): 365-374.
  • 10FERRERO A, SALICONE S. Uncertainty: Only one mathematical approach to its evaluation and expression?[J]. IEEE Transactions on Instrument and Measurement, 2012, 61(8): 2167-2178.

同被引文献16

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部