期刊文献+

大脑局部电位信号与呼吸的关系模型研究 被引量:1

Research on Respiratory and Local Field Potential of Brain
下载PDF
导出
摘要 由于脑电波信号由无数神经放电构成,使得研究大脑与生理动作刺激之间的关系极具挑战性。根据脑电波与呼吸之间的机理特征,该文采用小波变换分解并重构了局部电位信号的主要成分,采用主成份方法分析了与呼吸相关的脑电波主要成分,分析了子波段与呼吸的强弱关联关系与周期性关系。引入径向基函数神经网络方法辨识了脑系统的呼吸与局部电位信号关系模型。 Electroencephalogram (EEG) signals are made up of innumerable nerve discharges, so it is full of challenges to study the relationship between brain and physiological stimulus. According to the mechanism characteristics of EEG signals and breathing, the theory of wavelet transformation is used in this paper to decompose and reconstruct the main components of local potential signals. This paper analyzes the major component of EEG signals related to breathing by the application of main composition analytic means, and shows the associated relationships and the periodic relationship between sub-bands and breathing. The radial basis function (RBF) neural networks method is introduced to identify the relational models of the breathing of brain system and local potential signals.
出处 《电子科技大学学报》 EI CAS CSCD 北大核心 2016年第5期832-838,共7页 Journal of University of Electronic Science and Technology of China
基金 海南省自然科学基金(20166217) 海南省自然科学基金(20156217)
关键词 相关分析 局部电位信号 模型辨识 径向基函数神经网络 correlation analysis local field potential model identification radial basis function neuralnetwork
  • 相关文献

参考文献9

  • 1PINOTSIS D A, BRUNET N, BASTOS A, et al. Contrast gain control and horizontal interactions in VI: a DCM study[J]. NeuroImage, 2014, 92: 143-155.
  • 2ROSENBAUM R, ZIMNIK A, ZHENG F, et al. Axonal and synaptic failure suppress the transfer of firing rate oscillations, synchrony and information during high frequency deep brain stimulation[J]. Neurobiology of Disease, 2014, 62: 86-99.
  • 3MA J, WANG Z, PAN T. Two-dimensional continuous wavelet transform algorithm for phase extraction of two-step arbitrarily phase-shifted interferograms[J]. Optics and Lasers in Engineering, 2014, 55: 205-211.
  • 4CORREIA R, GABRIEL J, BRAS S, et al. Development of new research software for real-time raw electroencephalogram analysis[C]//1EEE International Symposium on Medical Measurements and Applications (MeMeA). [S.1.]: IEEE, 2014: 1-5.
  • 5王聪,陈填锐,刘腾飞.确定学习与基于数据的建模及控制[J].自动化学报,2009,35(6):693-706. 被引量:19
  • 6WU Wei, ZHONG Sheng, ZHOU Guo-peng. P1D intelligent optimization based on radial basis function neural networks[C]//2013 3rd International Conference on Consumer Electronics, Communications and Networks. [S.1.]: IEEE, 2013: 20-22.
  • 7REDLINE S, DENNIS D, SANDERS M H. Entering the era of "big data": Getting our metrics right[J]. Sleep, 2013, 36(4): 465.
  • 8LIBERMAN M Y, CHING S, CHEMALI J, et al. A closed-loop anesthetic delivery system for real-time control of burst suppression[J]. Journal of Neural Engineering, 2013, 10(4): 046004.
  • 9JENSEN A N, CLARK A J, SPARKS N T, et al. Embedded electroencephalogram processing and control for the actuation of a prosthetic thumb prototype[C]//2013 IEEE International Conference on Electronic Information Technology. [S.1.]: IEEE, 2013: 1-6.

二级参考文献29

  • 1Antunes C M, Oliveira A L. Temporal data mining: an overview. In: Proceedings of the 7th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. San Francisco, USA: ACM, 2001. 1-13
  • 2Han J W, Kamber M. Data Mining: Concepts and Techniques (Second Edition). Boston: Morgan Kaufmann, 2006
  • 3Ljung L. System Identification: Theory for the User (Second Edition). New Jersey: Prentice-Hall, 1999
  • 4Gevers M. A personal view of the development of system identification. IEEE Control Systems Magazine, 2006, 26(6): 93-105
  • 5Narendra K S, Parthasavathy K. Identification and control of dynamic systems using neural networks. IEEE Transactions on Neural Networks, 1990, 1(1): 4-27
  • 6Sanner R M, Slotine J J E. Gaussian networks for direct adaptive control. IEEE Transactions on Neural Networks, 1992, 3(6): 837-863
  • 7Sadegh N. A perceptron network for functional identification and control of nonlinear systems. IEEE Transactions on Neural Networks, 1993, 4(6): 982-988
  • 8Kosmatopoulos E B, Polycarpou M M, Christodoulou M A, Ioannou P A. High-order neural network structures for identification of dynamical systems. IEEE Transactions on Neural Networks, 1995, 6(2): 422-431
  • 9Polycarpou M M. Stable adaptive neural control scheme for nonlinear systems. IEEE Transactions on Automatic Control, 1996, 41(3): 447-451
  • 10Jagannathan S, Lewis F L. Discrete-time neural net controller for a class of nonlineardynamical systems. IEEE Transactions on Automatic Control, 1996, 41(11): 1693-1699

共引文献18

同被引文献6

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部