摘要
由于脑电波信号由无数神经放电构成,使得研究大脑与生理动作刺激之间的关系极具挑战性。根据脑电波与呼吸之间的机理特征,该文采用小波变换分解并重构了局部电位信号的主要成分,采用主成份方法分析了与呼吸相关的脑电波主要成分,分析了子波段与呼吸的强弱关联关系与周期性关系。引入径向基函数神经网络方法辨识了脑系统的呼吸与局部电位信号关系模型。
Electroencephalogram (EEG) signals are made up of innumerable nerve discharges, so it is full of challenges to study the relationship between brain and physiological stimulus. According to the mechanism characteristics of EEG signals and breathing, the theory of wavelet transformation is used in this paper to decompose and reconstruct the main components of local potential signals. This paper analyzes the major component of EEG signals related to breathing by the application of main composition analytic means, and shows the associated relationships and the periodic relationship between sub-bands and breathing. The radial basis function (RBF) neural networks method is introduced to identify the relational models of the breathing of brain system and local potential signals.
出处
《电子科技大学学报》
EI
CAS
CSCD
北大核心
2016年第5期832-838,共7页
Journal of University of Electronic Science and Technology of China
基金
海南省自然科学基金(20166217)
海南省自然科学基金(20156217)
关键词
相关分析
局部电位信号
模型辨识
径向基函数神经网络
correlation analysis
local field potential
model identification
radial basis function neuralnetwork