期刊文献+

禾谷刺盘孢菌在侵染早期与玉米蛋白的互作预测与分析

Prediction and Analysis on the Protein-protein Interactions between Colletotrichum graminicole and Zea mays at Early Stage of Infection
下载PDF
导出
摘要 【目的】研究禾谷刺盘孢菌与寄主玉米的蛋白互作关系,有助于从分子水平了解病菌致病过程及病菌-寄主互作机制。【方法】采用计算方法预测病菌侵染相关蛋白与寄主玉米蛋白的互作,并结合网络可视化工具和GO注释信息对参与互作的蛋白进行深入分析。【结果】预测结果包含了355对互作蛋白,涉及16个刺盘孢菌蛋白和173个玉米蛋白,其中刺盘孢菌蛋白为蛋白酶、锌羧肽酶、木聚糖酶等潜在的致病蛋白,而病菌靶向的寄主蛋白涉及对真菌防御响应、蛋白折叠、蛋白修饰等多种生物过程。对互作蛋白信息的分析则表明预测方法既识别到已知互作,如病菌木聚糖酶与寄主木聚糖酶抑制蛋白的互作,也发现了不少新互作蛋白。【结论】这些结果为明确禾谷刺盘孢菌在侵染早期与寄主的互作机制提供了有用信息。 [Objective] The aim of the study was to investigate the protein-protein interactions (PPIs) between C. graminicole and Z. mays, which would help us understand the pathogenesis of the pathogen and pathogen-host interaction mechanism on the molecular level. [Method] The computational methods were used to predict the PPIs between Colletotrichum infection-related proteins and Z. mays proteins and network visualization tool and GO annotation information were used to further analyse the interacting pairs. [Results] The predicted results contained 355 PPI pairs, involving 16 pathogen proteins and 173 host proteins. Among them, the pathogen proteins were potential pathogenic factors, such as protease, zinc carboxypeptidase and xylanase, and the host proteins were involved in diverse biological process including defense response to fungus, protein folding and protein modification. Further investigation on the predicted PPI pairs revealed that the computational methods detected some known PPIs previously reported in the literature, such as pathogen xylanase and host xylanase inhibitor. In addition, the methods proposed many unknown PPIs as well. [Conclusion] The results provided useful information for illustrating the interaction mechanism of C. graminicole and host at early stage of infection.
出处 《四川农业大学学报》 CSCD 北大核心 2016年第3期270-275,共6页 Journal of Sichuan Agricultural University
基金 福建省自然科学基金项目(2016J01101) 福建农林大学创新训练项目(201610389166)
关键词 禾谷刺盘孢菌 蛋白互作预测 病菌-寄主互作 Colletotrichum graminicole PPI prediction pathogen-host interaction
  • 相关文献

参考文献34

  • 1Frey T J, Weldekidan T, Colbert T, et al. Fitness evaluation of Rcgl, a locus that confers resistance to Colletotrichum gramini- cola(Ces.)G.W. Wils. using near-isogenic maize hybrids[J]. Crop Sci, 2011, 51, 1551-1563.
  • 2Bergstrom C G, Nicbolson R L. The biology of corn anthracnose: knowledge to exploit for improved management[J]. Plant Disease, 1999, 83(7): 596-608.
  • 3Miinch S, Ludwig N, Floss D S, et al. Identification of virulence genes in the corn pathogen Colletotrichum graminicola by Agro- bacterium tumefaciens-mediated transformation[J~. Molecular Pl- ant Pathology, 2011, 12( 1 ): 43-55.
  • 4O' Connell R J, THon M R, Hacqurads S, et al. Lifestyle tran- sitions in plant pathogenic Colletotrichum fungi deciphered by genome and transcriptome analyses[J ]. Nature Genetics, 2012(44):1060-1065.
  • 5耿锐梅,曹长代,董世峰,冯全福,陈志强,蒋彩虹,胡海州,张玉,罗成刚.植物寄主与病原真菌互作研究进展[J].中国果菜,2011,31(4):23-26. 被引量:2
  • 6Shoemaker B A, Panchenko A R. Deciphering protein-protein interactions. Part I. Experimental techniques and databases[J]. PLoS Comput Biol, 2007, 3(3): 42.
  • 7Shoemaker B A, Panchenko A R. Deciphering protein-protein interactions. Part II. Computational methods to predict protein and domain interaction partners I J]. PLoS Comput Biol, 2007, 3(4): 43.
  • 8Sahu S S, Weirick T, Kaundal R. Predicting genome-scale A ra- bidopsis-Pseudomonas syringae interactome using domain and interolog-based approaches[J]. BMC Bioinformatics, 2014, 15 (Suppl 11): S13.
  • 9Li Z G, He F, Zhang Z D, et al. Prediction of protein protein interactions between R alstonia solanacearum and A rab idap sis th- diana[J]. Amino Acids, 2012(42): 2363-2371.
  • 10Kim J G, Park D, Kim B C, et al. Predicting the interactome of Xanthomonas oryzae pathovar oryzae for target selection and db service[J~. BMC Bioinform, 2008(9): 41.

二级参考文献49

  • 1王忠华,贾育林,夏英武.植物抗病分子机制研究进展[J].植物学通报,2004,21(5):521-530. 被引量:30
  • 2韩德俊,曹莉,陈耀锋,李振岐.植物抗病基因与病原菌无毒基因互作的分子基础[J].Acta Genetica Sinica,2005,32(12):1319-1326. 被引量:15
  • 3王媛,杨红玉.植物的抗病性及其分子机制[J].安徽农学通报,2006,12(9):47-50. 被引量:4
  • 4孙宏博,张耀伟,崔崇士.植物抗软腐病基因工程的策略及研究进展[J].东北农业大学学报,2006,37(5):684-688. 被引量:4
  • 5Arrighi JF, Barre A, Amor BB, Bersoult A, Soriano LC, Mirabella R, de Carvalho-Niebel F, Journet EP, Gherardi M, Huguet T, Geurts R, Denarie J, Rouge P, Gough C (2006). The Medicago truncatula lysine motif-receptor-like kinase gene family includes NFP and new nodule-expressed genes. Plant Physiol 142, 265- 279.
  • 6Bateman A, Bycroft M (2000). The structure of a LysM domain from E. coli membrane-bound lytic murein transglycosylase D (MitD). J Mol Biol 299, 1113-1119.
  • 7Bensmihen S, de Billy F, Gough C (2011). Contribution of NFP LysM domains to the recognition of nod factors during the medicago truncatulalSinorhizobium meliloti symbiosis. PLoS One 6, e26114.
  • 8Bielnicki J, Devedjiev Y, Derewenda U, Dauter Z, Joachimiak A, Derewenda ZS (2006). B. subtilis ykuD protein at 2.0 A resolution: insights into the structure and function of a novel, ubiquitous family of bacterial enzymes. Protein Struct Funct Biolnforma 62, 144-151.
  • 9Bolton MD, Van Esse HP, Vossen JH, De Jonge R, Stergiopoulos I, Stulemeijer IJE, Van Den Berg G, Borras-Hidalgo 0, Dekker HL, De Koster CG, De Wit PJGM, Joosten MHAJ, Thomma BPHJ (2008). The novel Cladosporium fulvum lysin motif effector Ecp6 is a virulence factor with orthologues in other fungal species. Mol Microbiol 69, 119-136.
  • 10Buist G, Steen A, Kok J, KUipers OP (2008). LysM, a widely distributed protein motif for binding to (peptido) glycans. Mol Microbiol 68, 838-847.

共引文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部