期刊文献+

鹅AKR1D1基因编码区克隆、序列分析及在卵泡中的表达特性研究

Molecular Cloning,Bioinformatics of the Goose AKR1D1 Gene cDNA Coding Domain Sequence,and Its Differential Expression Profiles in Ovarian Follicles of Different Stages
下载PDF
导出
摘要 【目的】克隆鹅AKR1D1基因编码区序列,预测其蛋白结构、功能,并研究其在鹅各等级卵泡中的表达特性。【方法】以天府肉鹅母系为材料,采用RT—PCR技术克隆鹅AKR1D1基因编码区序列,利用多种生物信息学分析软件预测其结构与功能,并应用荧光定量PCR技术检测其在各等级卵泡中的表达特性。【结果】结果表明:鹅AKR1D1基因编码区全长981bp,编码326个氨基酸,氨基酸水平上与鸡相似性高达95.71%;氨基酸序列分析表明鹅AKR1D1蛋白相对分子量为37263.7Da,主要定位在细胞质和线粒体内,属于水溶性蛋白;预测鹅AKR1D1氨基酸含有磷酸化位点18个、糖基化位点3个;其二级结构以无规则卷曲为主,三级结构呈弯曲螺旋结构;荧光定量PCR结果显示,AKR1D1在鹅2-4mm卵泡颗粒层和膜层表达最高,在膜层F5和颗粒层F1中表达最低。【结论]AKR1D1可能通过调控类固醇激素的动态平衡从而对卵泡募集、筛选、闭锁以及排卵起到重要作用。 [Objective]The study was to clone the AKR1D1 gene's cDNA coding domain sequence of geese and predict its structure, function and expression profiles.[Methods]Using Tianfu meat-type geese as materials, we cloned the goose's AKRID1 coding domain sequence (CDS) by RTPCR, and predicted its protein structure and functions through several bioinformational tools and analyzed its expression in ovarian follicles of different stages of goose by real-time quantitative PCR.[Results]The results showed that the goose's AKR1D1 CDS consisted of 981 nucleotides that encoded 326 amino acids residues, and the amino acid homology of goose AKR1D1 shared 95.71% identity with chicken. The analysis of amino acid sequence revealed that the goose AKRIDI encoded water-soluble protein and its relative molecular weight was 37 263.7 Da. Subcellular location of AKR1D1 was primarily in the cytoplasm and chondriosome,and it did not belong to the secreted protein. It is predicted that the AKR1D1 protein contained 18 phosphorylation sites, 3 glycosylation sites. The secondary structure of AKR1D1 was mainly composed of random coil,while the tertiary structure of domain area showed a formic form helix structure. The results of real-time quantitative PCR revealed that goose AKR1D1 expressed most in theca layer and granulosa layer with 2-4 ram, at the lowest in theca layer of F5 and granulosa layer of F1. [Conclusion] AKRID1 may play an important role in the recruitment, selection, screening, atresia and ovulation of the follicle by regulating the dynamic balance of steroid hormones.
出处 《四川农业大学学报》 CSCD 北大核心 2016年第3期365-373,共9页 Journal of Sichuan Agricultural University
基金 "十二五"农村领域国家科技计划课题(2015BAD03B06) 农业产业技术体系(No.CARS-43-6) 四川省水禽育种攻关(2011NZ0099-8)
关键词 AKR1D1基因 编码区 荧光定量PCR goose AKR1D1 gene: coding domain sequence (CDS) real-time quantitative PCR
  • 相关文献

参考文献26

  • 1Liu H, Zhang W, Li Q, et al. The comprehensive mechanisms underlying nonhierarchical follicular development in geese (An- ser cygnoides)[J]. Animal Reproduction Science, 2015( 159): 131-140.
  • 2Westergaard L, Christensen t J, Mcnatty K P. Steroid levels in ovarian follicular fluid related to follicle size and health status during the normal menstrual cycle in women[J]. Human Repro- duction, 1986, 1(4): 227-32.
  • 3Jin Y, Chen M, Penning T M. Rate of steroid double-bond re- duction catalysed by the human steroid 513-reductase (AKR1D1) is sensitive to steroid structure:implications for steroid metabo- lism and bile acid synthesis[J]. Biochemical Journal, 2014, 462 (1): 163-171.
  • 4Charbonneau A, The V L. Genomic organization of a human 56- reductase and its pseudogene and substrate selectivity of the ex- pressed enzyme[J]. Biochimica et Biophysica Acta (BBA)-Gene Structure and Expression, 2001, 1517(2): 228-235.
  • 5Palermo M, Marazzi M G, Hughes B A, et al. Human Delta4- 3-oxosteroid 5beta-reductase (AKR1D1) deficiency and steroid metabolism[J]. Steroids, 2008, 73(73): 417-23.
  • 6Onishi Y, Noshiro M, Shimosato T, et al. Molecular cloning and sequence analysis of cDNA encoding delta 4-3-ketosteroid 5 beta-reductase of rat liver[Jl. Febs Letters, 1991, 283(2) : 215-8.
  • 7Kondo K H, Kai M H, Setoguchi Y, et al. Cloning and expre- ssion of cDNA of human delta 4-3-oxosteroid 5 beta-reductase and substrate specificity of the expressed enzyme[J]. European Journal of Biochemistry, 1994, 219(1-2): 357-63.
  • 8Chen M, Drury J E, Penning T M. Substrate specificity and in- hibitor analyses of human steroid 513-reductase (AKRID1)[J]. Steroids, 2011, 76(5): 484-90.
  • 9Chaudhry A S, Thirumaran R K, Yasuda K, et al. Genetic va- riation in aldo-keto reductase 1D1 (AKRID1) affects the expre- ssion and activity of multiple cytochrome P450s[J]. Drug Meta- bolism & Disposition the Biological Fate of Chemicals, 2013, 41 (8): 1538-1547.
  • 10Su A I, Wihshire T, Batalov S, et al. A gene atlas of the mouse and human protein-encoding transeriptomes[Jl. Proceedings of file National Academy of Sciences of the United States of America, 2004, 101 (16) : 6062-6067.

二级参考文献34

  • 1Eppig J J. Oocyte control of ovarian follicular development and function in mammals [J]. Reproduction, 2001,122: 829-838.
  • 2Woods D C, Johnson A L. Regulation of follicle-stimulating hormone-receptor messenger RNA in hen granulosa cells relative to follicle selection [J]. Biol Reprod,2005,72: 643-650.
  • 3McElroy A P, Caldwell D J, Proudman J A, et al. Modulation of in vitro DNA synthesis in the chicken ovarian granulosa cell follicular hierarchy by follicle-stimulating hormone and luteinizing hormone [J]. Pouh Sci,2004,83: 500-506.
  • 4Schmierer B, Schuster M K, Shkumatava A, et al. Activin and follicle-stimulating hormone signaling are required for long- term culture of functionally differentiated primary granulosa cells from the chicken ovary [J]. Biol Reprod,2003,68: 620-627.
  • 5Mahon M G, Lindstedt K A, Hermann M, et al. Multiple involvement of clusterin in chicken ovarian follicle development - Binding to two oocyte-specific members of the low density lipoprotein receptor gene family[J]. J Biol Chem,1999,274: 4036- 4044.
  • 6Hunzicker-Dunn M, Maizels E T. FSH signaling pathways in immature granulose cells that regulate target gene expression: brancing out from protein kinase A[J]. Cell sigal, 2006,18: 1351- 1359.
  • 7McElroy A P, Caldwell D J, Proudman J A, et al. Modulation of in vitro DNA synthesis in the chicken ovarian granulosa cell follicular hierarchy by follicle-stimulating hormone and luteinizing hormone[J]. Poult Sci, 2004, 83: 500-506.
  • 8Jin Y M, Zhang C Q, Lin X H, et al. Prostaglandin involvement in follicle-stimulating hormone-induced proliferation of granulosa cells from chicken prehierarchical follicles[J]. Prostag other Lipid Mediat, 2006, 81: 45-54.
  • 9Grieshaber N A, Boitano S, Ji I, et al. Differentiation of granulosa cell line: follicle-stimulating hormone induces formation of lameIlipodia and filopodia via the adenylyl cyclase/cyclic adenosine monophosphate signal[J]. Endocrinology, 2000, 141: 3461- 3470.
  • 10Kayampilly P P, Menon K M. Follicle-stimulating hormone inhibits AMPK activation and promotes cell proliferation of primary granulosa cells in culture through an Akt dependent pathway [J]. Endocrinology, 2009, 150: 929-935.

共引文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部