期刊文献+

基于局部不变特征与Camshift复杂环境跟踪技术研究 被引量:1

Research on complex environment vehicle tracking technology based on local invariant feature and Camshift
下载PDF
导出
摘要 针对城市道路交通中广泛存在由于车辆形变、雾霾天气、背景噪声以及光照变化、遮挡干扰等复杂环境导致传统方法跟踪失败的问题,提出在连续自适应均值漂移算法的基础上融合HSV颜色模型、局部不变特征的城市道路交通车辆目标跟踪新算法。新算法通过建立基于颜色、灰度的多特征模板,利用统计分析学样本主成分分析降维提高特征匹配的效率,定义并计算加权特征在空间上的分布,使得算法对复杂环境亦能较好的应对,保证跟踪稳定、准确。实验表明新算法识别率高、实时性好,抗环境干扰鲁棒性强。 Since the traditional tracking methods are failed due to the complex environments of vehicle deformation, haze weather, background noise, illumination variation and occlusion interference existing in urban road traffic, the vehicle target tracking new algorithm of urban road traffic is proposed, which integrates HSV color model and local invariant feature with the continuously adaptive mean shift (Camshift) algorithm. The multi-feature template based on color and gray level is established. The sample principal component analysis method of statistic analysis is used to reduce the feature dimension to improve the effi- ciency of feature matching. The spatial distribution of weighted features is defined and calculated, so the algorithm can better deal with the complex traffic environment, and ensure the stable and accurate tracking. The experimental results show that the new algorithm has high recognition rate, good real-time performance, and strong robust to resist environmental interference.
出处 《现代电子技术》 北大核心 2016年第19期169-173,178,共6页 Modern Electronics Technique
基金 住房城乡建设部科学技术计划项目(2014-K5-027) 江苏省高校自然科学研究面上项目(15KJB520033) 国家自然科学基金资助项目(51204175 U1261105) 江苏省大型工程装备检测与控制重点建设实验室开放课题(JSKLEDC201224) 徐州工程学院重点培育项目(XKY2015102)
关键词 特征融合 CAMSHIFT SIFT算法 降维 目标跟踪 feature fusion Camshift SIFT algorithm dimension reduction target tracking
  • 相关文献

参考文献13

  • 1MAURYA K, SINGH M, JAIN N. Real time vehicle tracking system using GSM and GPS technology: an anti-theft tracking system [J]. International journal of electronics and computer science engineering, 2012, 1 (3) : 1103-1107.
  • 2赵汝祺,赵祚喜,赵汝准.基于多项式卡尔曼滤波器的车辆定位试验[J].农业工程学报,2012,28(18):49-56. 被引量:12
  • 3CHITALIYA N G, TRIVEDI A I. Novel block matching algo- rithm using predictive motion vector for video object tracking based on color histogram [C]// Proceedings of 2011 IEEE Inter- national Conference on Electronics Computer Technology. Kan- yakumari: IEEE, 2011: 81-85.
  • 4陈志敏,薄煜明,吴盘龙,田梦楚,黎绍鑫,赵文科.基于新型粒子群优化粒子滤波的故障诊断方法[J].计算机应用,2012,32(2):432-435. 被引量:10
  • 5BRADSK1 G R. Computer vision face tracking for use in a per- ceptual user interface [C]// Proceedings of 1998 IEEE Work- shop on Applications of Computer Vision. [S.I.]: IEEE, 1998: 214-219.
  • 6曲巨宝,林宏基.一种基于MACA的自适应跟踪算法[J].徐州工程学院学报(自然科学版),2010,25(3):41-46. 被引量:2
  • 7CHENG Y. Mean shift, mode seeking and clustering [J]. IEEE transactions on pattern analysis and machine intelligence, 1995, 17(8): 790-799.
  • 8LOWED G. Distinctive image features from scale invariant key points [J]. International journal of computer vision, 2004, 60 (2): 91-110.
  • 9PANCHAL P M, PANCHAL S R, SHAH S K. A comparison of sift and surf [J]. International journal of innovative research in computer and communication engineering, 2013, 1(2): 323- 327.
  • 10屠礼芬,仲思东,彭祺,梅天灿.基于高斯金字塔的运动目标检测[J].中南大学学报(自然科学版),2013,44(7):2778-2786. 被引量:13

二级参考文献78

共引文献73

同被引文献5

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部