期刊文献+

响应面法优化嗜热链球菌WHH003的发酵条件 被引量:1

Optimization of fermentation conditions of Streptococcus thermophilus WHH003 by response surface methodology
下载PDF
导出
摘要 目的对嗜热链球菌WHH003发酵条件进行优化,以提高其发酵活菌数。方法采用单因素实验确定嗜热链球菌发酵条件的响应值,采用响应面法优化嗜热链球菌的发酵温度、p H以及接种量,确定最佳发酵条件。结果对嗜热链球菌活菌数的影响因素大小依次为:发酵p H值>接种量>发酵温度;最优发酵条件为:p H5.5、发酵温度45℃、接种量4%。在此条件下,嗜热链球菌的活菌数LG值为9.62。结论本研究建立的响应面模型可行,可降低其工业化生产成本。 Objective To optimize the fermentation conditions of Streptococcus thermopiles WHH003 so as to improve the bacterial count. Methods The response values were determined by single factor experiment. The conditions of fermentation temperature, p H value and inoculums size were optimized by response surface methodology in order to confirm the optimal fermentation conditions. Results The influencing factors for the bacterial counts of Streptococcus thermopiles WHH003 in the order were: fermentation p H value〉inoculums sizefermentation temperature, and the optimal fermentation conditions were as follows: p H 5.5, temperature 45 ℃ and inoculums size 4%. Under the optimized conditions, the bacterial count LG was up to 9.62. Conclusion The established response surface model is feasible, which can reduce the cost of production.
作者 陈琳 邢良英 李宝磊 侯保朝 李言郡 CHEN Lin XING Liang-Ying LI Bao-Lei HOU Bao-Chao LI Yan-Jun(Key Laboratory of Food and Biological Engineering of Zhejiang Province, Hangzhou Wahaha Group Co., Ltd., Hangzhou 31 0018, China)
出处 《食品安全质量检测学报》 CAS 2016年第8期3121-3125,共5页 Journal of Food Safety and Quality
基金 浙江省科技厅重点研发项目(2015C02SA1000006)~~
关键词 响应面法 嗜热链球菌 活菌数 发酵 response surface methodology Streptococcus thermopiles bacterial counts fermentation
  • 相关文献

参考文献15

  • 1Maira J, Noura K, Florian C, et al. A large scale in vitro screening of Streptococcus thermophilus strains revealed strains with a high anti-inflammatory potential [J]. Food Sci Technol, 2016, 70(7): 78-87.
  • 2Esteban VP, Maria EJ, Andrea D, et al. Screening and characterization of potential probiotic and starter bacteria for plant fermentations [J]. Food Sci Technol, 2016, 71(9): 288-294.
  • 3Kontham KV, Kesavan MN. Appraisal of lactic acid bacteria as protective cultures [J]. Food Control, 2016, 69(11): 61-64.
  • 4Tamime A. Fermented milks: a historical food with modem applications-a review [J]. Ear J Clin Nutr, 2002, 4(12): $2.
  • 5Vinderola C, Mocchiutti P, Rcinheimor J. Interactions among lactic acid starter and probiotic bacteria used for fermented dairy products [J]. J Dairy Sci, 2002, 85(4): 721-729.
  • 6Bongers RS, Hoefnagel MHN, Kleerebezem M. High-level acetaldehyde production in Lactococcus lactis by metabolic engineering [J]. Appl Environ Microbiol, 2004, 71 (2): 1109-1113.
  • 7Chaves AC, Fernandez M, LerayerAL, et al. Metabolic engineering of acetaldehyde production by Streptococcus thermophilus [J], Appl Environ Microbiol, 2002, 68(11): 5656-5662.
  • 8Zdravko ~umi6, Anita Vakula, Aleksandra Tepi6, et al. Modeling and optimization of red currants vacuum drying process by response surface methodology (RSM) [J]. Food Cherrg 2016, 203(15): 465-475.
  • 9Manohar B, Divakar S, Applications of surface plots and statistical designs to selected lipase catalysed esteridication reactions [J]. Process Biochem, 2004, 39(7): 847-853.
  • 10Schiraldic, Assuciv Maresca C, et al. High cell density cultivation of probiotics and lactic acid production [J]. Biotechnol Bioeng, 2002, 82(2): 213-222.

同被引文献13

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部