摘要
目的优化以氯化钠为助剂的微切变—助剂互作技术辅助提取柑橘皮中香精油的工艺条件。方法以柑橘皮为主要原料,氯化钠为助剂,石油醚为提取溶剂,以柑橘皮中香精油提取率为考察指标,采用单因素和正交实验对助剂添加量、研磨时间、研磨珠粒数和料液比等4个因素进行研究,优化微切变—助剂互作技术辅助提取柑橘皮香精油的最佳工艺条件。结果在氯化钠添加量为4%(W:W),研磨时间为35 min,球磨研磨珠粒数为10粒,料液比为1:40(m:V)的工艺条件下,香精油提取率最高为1.87%,比传统的热回流法提高了36.50%,且大大缩短提取周期,便于大规模生产。结论微切变—助剂互作技术为柑橘皮香精油的提取提供了新的思路。
Objective To optimize the extraction conditions of essential oil from citrus peel using press-shear assisted interaction technology with sodium chloride as additive. Methods Using citrus peel as main raw materials, sodium chloride as additive, petroleum ether as the organic solvent, the citrus peel essential oil extraction yield as investigation targets, the optimum extraction parameters of essential oil from citrus peel by press-shear assisted interaction technology were investigated, according to one-factor experiment and orthogonal design by analyzing the factors including dosage of sodium chloride, grinding time, milling ball number and the ratio of material to solvent. Results The highest extraction efficiency of essential oil was up to 1.87% when the dosage of sodium chloride was 4%(W:W), grinding time was 35 min, milling ball number was 10 and the ratio of material to solvent was 1:40(m:V). Under the optimum conditions, the extraction yield of essential oil was higher than traditional heat reflux extraction method of 36.50%, and the extraction duration was shortened, which indicated that the press-shear assisted interaction technology was benefit for mass production of essential oil. Conclusion The proposed method can provide a new idea and solution for the extraction of essential oil from citrus peel.
作者
吴菲菲
赵良忠
徐永平
李淑英
李化强
WU Fei-Fei ZHAO Liang-Zhong XU Yong-Ping LI Shu-Ying LI Hua-Qiang(Department of Biology and Chemistry Engineering, Shaoyang University, Shaoyang 422000, China Hunan Provincial Engineering and Technology Research Center for Fruit and Vegetable Clean Processing, Shaoyang 422000, China School of Life Science and Biotechnology, Dalian University of Technology, Dalian 116024, China Postdoctoral Research Stations of Dalian SEM Bio-Engineering Technology Co., Ltd., Dalian 116620, China)
出处
《食品安全质量检测学报》
CAS
2016年第8期3246-3252,共7页
Journal of Food Safety and Quality
基金
国家科技部863计划项目(2013AA102805-03)
湖南省科技厅重点项目(2015CK3031)
湖南省果蔬清洁加工工程技术研究中心项目(2015TP2022)~~
关键词
柑橘皮
微切变—助剂互作技术
香精油
氯化钠
热回流法
citrus peel
press-shear assisted interaction technology
essential oil
sodium chloride
heat reflux method