摘要
研究在经验模式分解的基础上提出了一种基于本征模式分量符号化分析的故障诊断方法:首先,对故障信号进行拓延,利用经验模式分解获取本征模式分量,实现原始信号在不同尺度下的分离;其次,依据符号动力学理论对本征模式分量进行符号化序列研究;最后,计算符号化后的本征模式分量序列的符号熵,构建特征向量表征故障特性,结合模式分类方法实现诊断。研究通过实验证明了所提出方法对于典型轴承故障有着很好的识别效果,并针对印刷机故障轴承进行实验,成功检测出了不同转速下的轴承故障。所提出诊断方法仅通过时域分量特征提取就获得了较好的诊断效果,相对减少了同类研究中频域特征提取的计算量,具备一定工程应用前景。
A fault diagnosis method of the intrinsic mode components symbolic analysis is proposed on the basis of empirical mode decomposition. Firstly, the extension fault signal is decomposed into several intrinsic mode functions under different time scales with empirical mode decomposition. Secondly, analyze the symbolization of intrinsic mode functions in order to find relationship between different faults hidden in them. At last, calculate entropy of symbolized sequence to establish a characteristic vector which can express fault in some way. And then realize the fault diagnosis with the help of some kind of pattern recognize method. The results show that there is a good recognition effect for typical bearing fault and printing machine fault. Bearing failures in offset printing under different rotational speed are detected successfully. The method has a good effect at features extraction in time domain and reduces computation in frequency domain compare with similar research. The symbolic entropy has good application prospects in engineering.
作者
侯和平
徐卓飞
刘凯
HOU HePing XU ZhuoFei LIU Kai(Faculty of Printing Packaging Engineering and Digital Media Technology, Xi' an University of Technology, Xi' an 710048, China School of Mechanical and Precision Instrument Engineering, Xi'an University of Technology, Xi' an 710048, China)
出处
《机械强度》
CAS
CSCD
北大核心
2016年第5期916-921,共6页
Journal of Mechanical Strength
基金
国家自然科学基金项目(51305340)
国家科技支撑计划资助项目(2013BAF04B00)
西安理工大学高层次人员科研启动基金(108-451115002)资助~~
关键词
滚动轴承
故障诊断
经验模式分解
符号化
Rolling bear
Fault diagnosis
Empirical mode decomposition
Symbolic signal