期刊文献+

基于耦合凝聚的二次修改的结构拓扑重分析

STRUCTURAL TOPOLOGY REANALYSIS FOR TWICE CONTINUOUS MODIFICATIONS BASED ON COUPLED CONDENSATION
下载PDF
导出
摘要 研究了连续两次修改的结构动力学拓扑重分析问题。基于我们提出的耦合凝聚方法,独立和耦合质量正交化处理措施,再结合瑞利-里兹分析法,形成了适用于两次修改的增加自由度的结构拓扑大修改的快速动力学重分析方法。该方法减少了两次直接分析所需要的大量计算量,且操作简单,易于实现。数值算例结果表明,对于这类涉及两次修改的拓扑大修改重分析问题,所提的方法是十分有效的。 According to the problem of structural dynamical topological reanalysis for continuous two modifications, a new method for dynamic reanalysis of topological modified structure with added degrees and two continuous modifications was proposed in this paper, which is combined independent mass orthogonalization strategy with Rayleigh-Ritz analysis and the coupled condensation method. Comparing with the direct finite element analysis (FEA) , the high computational effort for FEA is greatly decreased by utilizing the proposed reanalysis procedures, which is also easy to operate and implement. The numerical example shows that the proposed method for dynamical topological reanalysis of continuous two modifications is effective.
作者 何建军 陈享姿 HE JianJun CHEN XiangZi(School of Automobile and Mechanical Engineering, Changsha University of Science and Technology, Changsha 410076, China)
出处 《机械强度》 CAS CSCD 北大核心 2016年第5期980-983,共4页 Journal of Mechanical Strength
基金 国家自然科学基金项目(51305048) 湖南省高等学校科学研究一般项目(11C0045)资助~~
关键词 连续两次修改 耦合凝聚 动力学拓扑重分析 质量正交化 Twice continuous modifications The coupled condensation Dynamical topological reanalysis Massorthogonalization
  • 相关文献

参考文献9

  • 1Oded Amir a, Ole Sigmund, Boyan S. Lazarov, et al. Efficient reanalysis techniques for robust topology optimization [ J]. Comput. Methods Appl. Mech. Engrg. , 2012, 245-246: 217-231.
  • 2Su Huan Chen, Liang Ma, Guang Wei Meng, et al. An efficient method for evaluating the natural frequencies of structures with uncertain-but-bounded parameters [ J]. Computers and Structures, 2009, 87 : 582-590.
  • 3A. Kaveh, H. Fazli. Approximate eigensolution of locally modified regular structures using a substructuring technique [ J ]. Computers and Structures, 2011, 89: 529-537.
  • 4Liang Ma, Su Huan Chen, Guang Wei Meng. Combined approximation for reanalysis of complex eigenvalues [ J ]. Computers and Structures, 2009, 87: 502-506.
  • 5P. Cacciola, G. Muscolino. Reanalysis techniques in stochastic analysis of linear structures under stationary multi-correlated input [ J]. Probabilistic Engineering Mechanics, 2011, 26 : 92-100.
  • 6F. Massa, T. Tison, B. Lallemand. Structural modal reanalysis methods using homotopy perturbation and projection techniques [ J]. Comput. Methods Appl. Mech. Engrg. , 2011, 200: 2971-2982.
  • 7Mitsuhiro Kashiwagi. A numerical method for eigensolution of locally modified systems based on the inverse power method [ J ]. Finite Elements in Analysis and Design, 2009, 45: 113-120.
  • 8邸娜,陈力奋,王皓.非亏损系统二次特征值问题的Ritz降阶法[J].振动与冲击,2002,21(4):80-84. 被引量:3
  • 9U. Kirsch. Combined approximations-a general reanalysis approach for structural optimization [ J ]. Struct Multidisc Optim, 2000, 20 : 97-106.

二级参考文献5

  • 1Adhikari S.Modal Analysis of Linear Asymmetric Nonconservative Systems.Journal of Engineering Mechanics.1999,125(12):1372-1379
  • 2Song H W,Chen L F,Wang W L.Modal Analysis of QuadraticEigenproblems for Non-defective systems.Proceedings of the Asia-Pacific Vibration Conference 2001,I:375-380
  • 3Roges A Horn,Charles R Johnson.Matrix Analysis.Cambridge University Press,1985
  • 4Wilkinson J H著,石钟慈,邓健新译.代数特征值问题,北京:科学出版社,2001
  • 5Allemang R J,Brown D L.A Correlation Coefficient for Modal Vector Analysis.Proceedings of 1th International Modal Analysis Conference.1983,110-116

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部