期刊文献+

风速对特高压直流输电线路离子流场分布的影响 被引量:15

Effect of Wind Speed on Ion Flow Field Under UHVDC Transmission Lines
下载PDF
导出
摘要 特高压直流(UHVDC)输电线路地面离子流场的大小是检验电磁环境是否超标的重要判据,对不同风速条件下的地面离子流场的分布进行了计算研究。针对离子流场的计算,提出一种改进迭代上流有限元方法,建立了考虑风速影响的离子流场模型。研究了不同风速对±800 k V输电线路离子流场分布规律的影响。研究表明,地面最大合成场强和离子流密度随风速的增大而增加明显,且风速会使其发生一定偏移。考虑风速为8 m/s时,地面最大合成场强比无风增加了12.64 k V/m,且地面最大离子流密度是无风时的2.65倍。水平风速越大地面合成场强和离子流密度的分布曲线和峰值往背风向偏移越严重,空间其他较远处的合成场强和电荷密度变化不大,且空间合成场强与电荷密度的最大值主要分布于导线周围空间。 The size of the ground ion flow field of ultra-high voltage direct current (UHVDC) transmission line is an important criterion to test the electromagnetic environment. An improved upstream finite element method is proposed, which is based on the consideration of the influence of wind speed. The influence of different wind speed on the distribution of ion flow field of ±800 kV transmission line is studied. It is obtained that the maximum ground level electric field strength and ion current density increase with the increase of the wind speed. And the maximum values shift to the downwind side with the effect of wind. Considering the wind speed as 8 m/s, the maximum electric field strength on the ground will increase by 12.64 kV/m and the maximum ion current density is 2.65 times than that with no wind. With the wind speed increasing, the distribution curve and peak value of ground electric field strength and ionic current density shift to the back direction of wind more seriously. The space electric field strength and charge density hardly change in other space. The maximum electric field and space charge density value are mainly distributed in the space around the wire.
出处 《高电压技术》 EI CAS CSCD 北大核心 2016年第9期2897-2901,共5页 High Voltage Engineering
基金 高校博士学科点专项科研基金(20120161110009) 国家自然科学基金(61102039)~~
关键词 特高压直流 离子流场 上流有限元法 风速 合成场强 离子流密度 UHVDC ion flow field upstream finite element method wind speed complex electric field strength ion current density
  • 相关文献

参考文献14

  • 1LILT Zhenya. Electromagnetic environment of UHVDC transmission project[M]. Beijing, China: China Electric Power Press, 2009: 9-24.
  • 2李永明,邹岸新,徐禄文,张淮清.特高压直流输电线路离子流场的有限元-积分法计算[J].高电压技术,2012,38(6):1428-1435. 被引量:17
  • 3Khalifa M M, Morris R M. A laboratory study of the effects of wind in DC corona[J]. IEEE Transactions on Power Apparatus and Systems, 1967, 86(3): 290-298.
  • 4Hara M, Hayashi N, Shiotsuki K, et al. Influence of wind and conduc- tor potential on distributions of clec:c field and ion currant density at ground level in DC high voltage line to plane geometry[J]. IEEE Transactions on Power Apparatus and Systems, 1982, 101 (4): 803 -814.
  • 5Takuma T, Tsutomu I, Kawamoto T. Calculation of ion flow fields of HVDC transmission lines by thefinite element method[J]. IEEE Transactions on Power Apparatus and Systems, 1981, 100(12):4802-4811.
  • 6Takuma T, Kawamoto T. A very stable calculation method for ion flow field of HVDC transmission lines[J]. IEEE Transactions on Pow- er Delivery, 1987, 12(1): 189-198.
  • 7Li X, Ciric I IL Raghuveer M R. Investigation of ionized field due to bundled unipolar DC transmission lines in the presence of wind[J]. IEEE Transactions on Power Delivery, 1999, 14(1): 211-217.
  • 8Lu T B, Feng H, Cui X, et al. Analysis of the ionized field under HVDC transmission lines in the presence of wind based on upstream finite element method[J].IEEE Transactions on Magnetics, 2010, 46(8) 2939-2942.
  • 9Huang G D, Ruan J J, Du Z Y, et al. Highly stable upwind FEM for solving ionized field of HVDC transmission Line[J]. IEEE Transac- tions on Magnetics, 2012, 48(2): 719-722.
  • 10Sarma Mamvada P. Influence of wind on the electric field and ion current environment of HVDC transmission lines[J]. IEEE Transac- tions Power Delivery, 2014, 29(6): 2561-2569..

二级参考文献121

  • 1周浩.有限元外推在高压电场分析计算中的应用[J].高电压技术,1994,20(1):17-20. 被引量:2
  • 2张宇,魏远航,阮江军.高压直流单极离子流场的有限元迭代计算[J].中国电机工程学报,2006,26(23):158-162. 被引量:22
  • 3黄道春,魏远航,钟连宏,阮江军,皇甫成.我国发展特高压直流输电中一些问题的探讨[J].电网技术,2007,31(8):6-12. 被引量:139
  • 4盛剑霓 严璋 等.直流离子流场解的唯一性[J].电工技术学报,1987,1:1-5.
  • 5张文亮,于永清,李光范,范建斌,宿志一,陆家榆,李博.特高压直流技术研究[J].中国电机工程学报,2007,27(22):1-7. 被引量:363
  • 6崔翔.应用边界电场积分方程法计算第一类边界上的电场分布.中国电机工程学报,1987,7(1):51-58.
  • 7Sarma M P,Janischewskyj W. Analysis of corona losses on DC transmission lines I-Unipolar lines[J]. IEEE Transactions on Power Apparatus and Systems, 1969, 88(5): 718-731.
  • 8Sarma M P,Janischewskyj W. Analysis of corona losses on DC transmission lines: part Ⅱ-Bipolar lines [J]. IEEE Transac- tions on Power Apparatus and Systems, 1969, 88(10): 1476- 1491.
  • 9Abdel-Salam M, Farghally M, Abdel-Sattar S. Finite elementsolution of monopolar corona equation[J]. IEEE Transactions on Electrical Insulation, 1983,18(2): 110-119.
  • 10Tomotaka Suda, Yoshitaka. Calculation of large ion densities under HVDC transmission lines by the finite difference method [J]. IEEE Transactions on Power Delivery, 1995,10(4): 1896- 1905.

共引文献78

同被引文献163

引证文献15

二级引证文献45

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部