期刊文献+

次磷酸铝与石墨烯对PBT的协效阻燃作用 被引量:4

Synergistic Effect of Aluminum Phosphate and Graphene on Flame Retardant PBT
下载PDF
导出
摘要 将次磷酸铝(AHP)和石墨烯(RG(O)协效应用于聚对苯二甲酸丁二醇酯(PBT)的阻燃处理。采用极限氧指数、垂直燃烧分析、微型量热分析、热失重分析等研究了PBT复合材料的阻燃性能。结果表明,适量RGO的加入能明显改善PBT的抗滴落性能;PBT/AHP-0.5%RGO(质量分数,下同)样品的热释放速率峰值最低,从PBT/20%AHP的518.7 W/g降低到433.0 W/g,下降了约16.52%;RGO在合适的比例下可以促进PBT/AHP-0.5%RGO样品残炭外表面形成较多数量,致密的囊泡,有效地阻碍了可燃性小分子的逸出,改善了材料的阻燃性能。 Aluminum phosphate (AHP) and graphene (RGO) were used as flame retardants for poly (1,4-butylene terephthalate)(PBT). The limited oxygen index and vertical burning tests showed that the addition of suitable amount of RGO could obviously improve the anti-dripping performance of PBT. Micro calorimeter test showed that the sample of PBT/AHP-0. 5%RGO had the lowest peak heat release rate, which decreased from 518. 7 to 433.0 W/g. A proper proportion of RGO could promote the formation of large quantity pores on the surface, which may prevent the escape of the flammable small molecules, thus to improve the flame retardant properties of the materials.
出处 《中国塑料》 CAS CSCD 北大核心 2016年第9期41-47,共7页 China Plastics
关键词 次磷酸铝 石墨烯 聚对苯二甲酸丁二醇酯 阻燃 囊泡 aluminum phosphate graphene poly (1,4-butylene terephthalate) flame retardant vesicle
  • 相关文献

参考文献11

  • 1Yang W, Song I., Hu Y, et al. Investigations of Thermal Degradation Behavior and Fire Performance of Halogen- free Flame Retardant Poly (1, 4 butylene terephthalate) Composites [J]. Journal of Applied Polymer Science. 2011. 122(122) : 1480-1488.
  • 2Modesfi M. I.oreietti A. Halogen-free Flame Retardants for Polymeric Foams[J]. Polymer Degradation & Stabili- ty. 2002, 78(1): 167-173.
  • 3Schartel B, Potschke P, Knoll U, et al. Firel:k, haviour of Polyamide 6/Muhiwall Carbon Nanotube Nanocomposites [J]. European Polymer Journal, 2005, 41 (5): 1061- 1070.
  • 4Higginbotham A L, I.omeda J R, Morgan A B, et al. Graphite Oxide Flame-retardant Polymer Nanocomposites [J]. ACS Applied Materials &- Interfaces, 2009, 10 (1) : 2256- 2261.
  • 5Bao C, Song I., Xing W, et al. Preparation of Graphene by Pressurized Oxidation and Multiplex Reduction and Its Polymer Nanocomposites by Masterbatch-based Melt Blending[J]. Journal of Materials Chemistry, 2012, 22 (13) : 6088-6096.
  • 6Jiang S D, Bai Z M. Gang T, et al. Synthesis of ZnS Dec- orated Graphene Sheets for Reducing Fire Hazards of Ep oxy Composites[J]. Industrial & Engineering Chemistry Research. 2014. 53(16): 6708-6717.
  • 7Tang X Z, Li W J, Yu Z Z, et al. Enhanced Thermal Sta- bility in Graphene Oxide Covalently Functionalized with 2- amino-4, 6-didodecylamino-1, 3, 5-triazine [J] . Carbon, 2011. 49 (4): 1258-1265.
  • 8Yuan F Y, Zhang H B, I+i X, et al. InSitu Chemical Re- duction and Functionalization of Graphene Oxide for Elec- trically Conductive Phenol Formaldehyde Composites[J]. Carbon, 2014, 68: 653-661.
  • 9Xu W Z, Wang P C, Wang S Q, et al. Synthesis of Mi- crosphere Aluminum Hypophosphite and Its Application in Polyurethane Elastomer[J]. Journal of Applied Polymer Science, 2015, 132(31): 42369-32376.
  • 10Tang G, Wang X, Xing W Y, et al. Thermal Degrada- tion and Flame Retardance of Biobased Polylaetide Com- posites Based on Aluminum Hypophosphite[J]. Industri- al Engineering Chemistry Research, 2012, 51 (37) :12009-12016.

同被引文献65

引证文献4

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部