期刊文献+

基于局部特征与全局特征的图像显著性目标检测 被引量:9

Image saliency target detection based on global features and local features
原文传递
导出
摘要 在采用图像谱残差分析方法获取全局特征显著性图像的基础上,利用小波变换在时域和频域具有的局部特征信息表征能力,通过对图像包含的不同特征信息进行小波变换,去除各个特征图中的冗余信息,得到图像局部特征显著部分,对两种分析方法下获得的显著图进行融合分析,获得最终的图像显著部分,并利用视觉转移机制在原图中勾画出显著性目标.实验结果分析表明,改进后的方法提高了图像显著目标检测的准确率. The method of spectral residual analysis is adopted to get the global features' saliency map, and the wavelet transforms' local feature information representation ability in the time domain and frequency domain is used to remove redundant information and get local features highlights. The two ways are combined to get the final-saliency map and block out the saliency target. Experimental results show that the detection accuracy is improved by using the proposed method.
出处 《控制与决策》 EI CSCD 北大核心 2016年第10期1899-1902,共4页 Control and Decision
基金 国家自然科学基金项目(61203261 61273277) 山东省自然科学基金项目(ZR2012FQ003) 浙江大学CAD&CG国家重点实验室开放课题(A1514) 江苏省大数据分析技术重点实验室(南京信息工程大学)开放课题(KXK1404)
关键词 谱残差 小波变换 局部特征 全局特征 目标检测 spectral residual wavelet transform local features global features target detection
  • 相关文献

参考文献17

  • 1Lu P. Target recognition based on biological-like vision identity[D]. Chengdu: The Institute of Optics and Electronics, The Chinese Academy of Science, 2014.
  • 2Liu Z. Saliency tree: A novel saliency detection framework[J]. IEEE Trans Image Processing, 2014, 23(5): 1937-1952.
  • 3Luo S, Li L. Efficient saliency detection using regional color and spatial information[C]. Visual Information Processing. Paris: Praeger Publishers, 2013: 184-189.
  • 4Ren Z. Region-based saliency detection and its application in object recognition[J]. IEEE Trans on Circuits and Systems for Video Technology, 2013, 24(5): 769-779.
  • 5Xie Y, Lu H. Bayesian saliency via low and mid level cues[J]. IEEE Trans on Image Processing, 2012, 22(5): 1689-1698.
  • 6Cao C, Liu J. Automatic image cropping via the novel saliency detection algorithm[C]. IEEE Trans on Software Engineering and Service Science. Beijing: IEEE Press, 2013: 955-958.
  • 7Song M. Low-level and high-level prior learning for visual saliency estimation[C]. Information Science. New York: North-Holland, 2014: 573-585.
  • 8Itti L. Models of bottom-up and top-down visual attention[D]. Pasadena: California Institute of Technology, 2000.
  • 9Harel J, Koch C, Perona P. Graph-based visual saliency[C]. Advances in Neural Information Processing Systems. Massachusetts: MIT Press, 2007: 545-552.
  • 10Achanta R, Estrada F, Wils P, et al. Salient region detection and segmentation[C]. Int Conf on Computer Vision Systems. Germany Prince: Springer, 2008: 66-75.

同被引文献83

引证文献9

二级引证文献63

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部