期刊文献+

模拟月壤的抗剪强度特性试验

Test Research on Shear Strength Properties of Simulant Lunar Soil
下载PDF
导出
摘要 对火山玄武岩破碎后形成的6个粒组区间的试样依规范进行直剪试验,得出不同相对密度下的内聚力和内摩擦角试验数据;根据抗剪强度参数的统计结果,按Chauvenet法剔除粗差数据,并评价变异性,以提高数据的准确性和可靠度。对试样在不同的相对密度下和不同粒组区间的力学规律进行对比、研究分析后得出:模拟月壤的内聚力为0.33~5.5kPa,内摩擦角为29.1°~35.65°;抗剪强度参数与颗粒粒径、密度具有较好的线性关系;颗粒粒径决定了密度的变化范围,这导致了抗剪强度参数在密度的一定的范围内随之变化,而总的变化趋势却是由粒径来控制的。根据以上结论,按一定颗粒级配研制模拟月壤混合样,其内聚力为0.16~1.59kPa,内摩擦角为34.8°~45.5°,符合真实月壤的实际情况。可为后续的模拟月壤研制和性能评估提供参考。 The rebuilt volcanic basalt samples consist of smashed basalt particles,grouped by six grain diameters.They were studied by direct shear experiments following standard to acquire the data of cohesion and internal friction under different relative densities.To improve accuracy and reliability of the data,gross error data were rejected by applying the Chauvenet method and the variability was assessed according to the statistical results of shear strength parameters.The results are acquired after the research on the mechanical theorem of samples under different relative densities and particle groups.When water content is ignored,the following results are obtained.The cohesion range is 0.33-5.5kPa and the internal friction range is 29.1°-35.65°.There is better relationship among particle size,density and direct shear strength parameters.The particle size decides the range of the density so that the parameters vary with density in a certain range,while the total varying trend is controlled by the particle size.Finally,according to the above conclusion,the cohesion and internal friction range of mixed samples are 0.16-1.59 kPa and34.8°-45.5°,which are developed in a certain grain composition based on the single samples,proving to be in the range of the lunar soil.The achievement could provide reference and basis for the subsequent development and assessment of the simulant lunar soils.
作者 范斌强 王江 林彤 田庄 Fan Binqiang Wang Jiang Lin Tong Tian Zhuang(Faculty of Engineering Planetary Science Institute,Faculty of Earth Sciences, China University of Geosciences, Wuhan 430074, China)
出处 《地质科技情报》 CAS CSCD 北大核心 2016年第5期242-246,共5页 Geological Science and Technology Information
基金 国家自然科学基金项目(41373066)
关键词 模拟月壤 抗剪强度 力学特性 simulant lunar soil direct shear strength mechanical property
  • 相关文献

参考文献15

  • 1Mckay D S, Carter J L, Boles W W,et al. JSC-1 : A new lunarregolith simulant[J]. Lunar and Planetary Institute* 1993 , 24 :963-964.
  • 2Mckay D S, Carter J L, Boles W W* et al. JSC-1 : A new lu-nar soil simulant [A] // Anon. Engineering,construction, andoperations in Space IV. Albuquerque : American Society of CivilEngineers,1994:857-866.
  • 3Weiblen P W,Murawa M J,Reid K J,et al. Preparation of sim-construction, and operations in space fl ? New York: AmericanSociety of Civil Engineers, 1990:98-106.
  • 4Yoshida H,Watanabe T, Kanamori H, et al. Experimentalstudy on water production by hydrogen reduction of lunar soilsimulant in a fixed bed reactor [J]. Abastract of Space Re-sources Roundtable II. Golden,USA,2000,148( 1) :36-42.
  • 5贺新星,肖龙,黄俊,何琦,高睿,杨刚.模拟月壤研究进展及CUG-1A模拟月壤[J].地质科技情报,2011,30(4):137-142. 被引量:21
  • 6邹猛,李建桥,刘国敏,张金换,李因武.模拟月壤地面力学性质试验研究[J].岩土力学,2011,32(4):1057-1061. 被引量:23
  • 7李萌,高峰,孙鹏,崔莹.月壤力学参数反求及试验验证[J].北京航空航天大学学报,2011,37(9):1081-1085. 被引量:4
  • 8杨艳静,向树红.模拟月壤力学性质的试验和仿真研究[J].航天器环境工程,2009,26(z1):1-4. 被引量:8
  • 9Lai M, Luna R. Direct shear tests on JSC-1 A lunar regolithsimulant[J]. Journal of Aerospace Engineering, 2011,24 ( 4):.
  • 10Alshibli K A, Hasan A. Strength properties of JSC-1 A lunarregolith simulant[J]. Journal of Geotechnical Geoenviron-mental Engineering,2014,135(5) :673-679.

二级参考文献56

  • 1徐远杰,王观琪,李健,唐碧华.在ABAQUS中开发实现Duncan-Chang本构模型[J].岩土力学,2004,25(7):1032-1036. 被引量:71
  • 2SHIBLY H, IAGNEMMA K, DUBOWSKY S. An equivalent soil mechanics formulation for rigid wheels in deformable terrain, with application to planetary exploration rovers[J]. Journal of Terramechanics, 2005, 42: 1-13.
  • 3NILDEEP P, GREGORYP S G. Application of Bekker theory for planetary exploration through wheeled, tracked and legged vehicle locomotion[C]//Space Conference and Exhibit. California: AIAA, 2004: 6091.
  • 4SUBHAYU S, CHANDRA S R, RAMANA G R. Processing of lunar soil simulant for space exploration applications[J]. Materials Science and Engineering, 2005: 592-597.
  • 5WILLMAN B M, BOLES W W, MCKAY D S. Properties of lunar soil stimulant JSC-I[J]. Journal of Aerospace Engineering, 1995, 8(2): 77-87.
  • 6RICHTER L, ELLERY A, GAO Y, et al. A predictive wheel-soil interaction model for planetary rovers validated in test beds and against MER mars rover performance data[C]//10th European Conference of the ISTVS. Budapest, Hungary: [s. n.], 2006.
  • 7Iagnemma K, Kang S, Shibly H, et al. Online terrain parameter estimation for wheeled mobile robots with application to planetary rovers [ J ]. IEEE Transactions on Robotics, 2004,20 ( 5 ) : 951 - 927.
  • 8Hutangkabodee S, Zweiri Y H, Seneviratne L D, et al. Perform- ance prediction of a wheeled vehicle on unknown terrain using i- dentified soil parameters [ C ]//Proceedings of the 2006 IEEE International Conference on Robotics and Automation. Orlando, Florida : IEEE ,2006 : 3356 - 3361.
  • 9Ding Liang, Yoshida K, Nagatani K, et al. Parameter identifica- tion for planetary soil based on a decoupled analytical wheel-soil interaction terramechanics model [ C ]//The 2009 IEEE/RSJ In- ternational Conference on Intelligent Robots and Systems. St Lou- is: [ s. n. ] ,2009:4122 -4127.
  • 10Bekker G. Introduction to terrain-vehicle systems [ M ]. Michigan: University of Michigan Press, 1969.

共引文献51

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部