期刊文献+

基于压缩感知的MIMO-OFDM系统的信道估计 被引量:3

Channel Estimation of MIMO-OFDM System based On Compressive Sensing
下载PDF
导出
摘要 由于多输入多输出正交频分复用(MIMO-OFDM)系统信道具有稀疏性特点,MIMOOFDM系统的信道估计问题就转变为稀疏信号的重建。传统的多输入多输出正交频分复用(MIMO-OFDM)无线通信系统的信道估计算法,没有充分利用无线信道固有稀疏性,导致信道估计精度和频谱资源利用率不高等问题。因此,提出一种可扩展的正交匹配追踪算法(Extended Orthogonal Matching Pursuit,OMP_α),α为扩展因子α∈[0,1]。在原有的正交匹配追踪算法(Orthogonal Matching Pursuit,OMP)的基础上,通过适当增加迭代次数(m+(αm))来选取更加精确的匹配原子,从而达到重构原信号的目的。仿真结果表明,与现有的OMP算法、最小二乘法(LS)相比,OMP_α算法提高了信号的重构概率和精度,同时也提高了频谱资源的利用率和信道估计的性能。 The channel estimation problem of MIMO-OFDM(Multiple-lnput Multiple-Output Orthogonal Frequency Division Multiplexing) system can be transformed into sparse signal reconstruction due to the sparsity of MIMO-OFDM system channel.The channel estimation algorithm of traditional MIMO-OFDM wireless communication system does not make full use of the inherently sparsity of wireless channel, which leads to that channel estimation accuracy and the rate of spectrttm resource utilization is not high. In this paper, we mainly adopts an extended orthogonal matching pursuit algorithm(OMPα) and a is the expansion factor(α∈[0,1]).By appropriately increasing the number of iterations ( m + [ am ] ) to select a more accurate matching of atoms based on the original OMP (Orthogonal Matching Pursuit)algorithm, so as to achieve the α of reconstructing the original signal.Simulation shows that OMPα algorithm not only improves the probability and precision of signal reconsauction compared with existing OMPα algorithm and the conventional LS (Least Square) channel estimation method but also improves the utilization of spectrum resources and the performance of channel estimation.
作者 杨亮 齐丽娜 YANG Liang QI Li-na(College of Telecommunication & Information Engineering, Nanjing University of Posts and Telecommunications, Nanjing Jiangsu 210003, China)
出处 《通信技术》 2016年第10期1280-1286,共7页 Communications Technology
基金 国家重点基础研究发展计划(973计划)基金资助项目(No.2013CB329005) 国家自然科学基金(No.61471201)~~
关键词 压缩感知 信道估计 多输入多输出 正交频分复用 可扩展正交匹配追踪 compressive sensing channel estimation multi-input and multi-output orthogonal frequency division multiplexing extended orthogonal matching pursuit
  • 相关文献

参考文献13

  • 1ZHOU Y, WANG J,SAWAHASHI M.Downlink Transmis- sion of Broadband OFCDM Systems-Part I:Hybrid Detection[J].IEEE Transactions Communications,2005, 53(04):718-729.
  • 2Donoho D L.Compressed Sensing[J].IEEE Transaction on Information Theory,2006,52(04): 1289-1306.
  • 3Candes E J.Compressive Sampling[A]//In Proceedings of the International Congress of Mathematics,Madrid[M]. Spain:the European Mathematical Society,2006: 1433-1452.
  • 4Bajwa W,Haupt J,Sayeed A.Compressing Channel Sensing:A New Approach to Estimating Sparse Multipath Channels[J].Proceedings of the IEEE,2010,98(06):1058- 1076.
  • 5石光明,刘丹华,高大化,刘哲,林杰,王良君.压缩感知理论及其研究进展[J].电子学报,2009,37(5):1070-1081. 被引量:711
  • 6Chenhao Qi,Lenan Wu.A Hybrid Compressing Sensing Algorithm for Sparse Channel Estimation in MIMO- OFDM Systems[J].IEEE Transactions on Signal Processi ng,2011,58(01):3488-3491.
  • 7何雪云,宋荣方,周克琴.基于压缩感知的OFDM系统稀疏信道估计新方法研究[J].南京邮电大学学报(自然科学版),2010,30(2):60-65. 被引量:51
  • 8王妮娜,桂冠,苏泳涛,石晶林,张平.基于压缩感知的MIMO-OFDM系统稀疏信道估计方法[J].电子科技大学学报,2013,42(1):58-62. 被引量:21
  • 9CANDES E J.The Restricted Isometry Property and Its Implications for Compressed Sensing[J].Comptes RendusMathematique,2008,346(09/10):589-592.
  • 10Donoho D L.For Most Large Underdetermined Systems of Equations,the Minimal 11 Norm Near-solution Approximates the Dparsest Near-solution [J].Communications on Pure and Applied Mathematics,2006,59(07):907-934.

二级参考文献121

  • 1张春梅,尹忠科,肖明霞.基于冗余字典的信号超完备表示与稀疏分解[J].科学通报,2006,51(6):628-633. 被引量:71
  • 2王甫莉,阔永红,陈健,刘献玲.MIMO-OFDM系统信道估计算法综述[J].电子科技,2007,20(2):73-75. 被引量:11
  • 3R Baraniuk.A lecture on compressive sensing[J].IEEE Signal Processing Magazine,2007,24(4):118-121.
  • 4Guangming Shi,Jie Lin,Xuyang Chen,Fei Qi,Danhua Liu and Li Zhang.UWB echo signal detection with ultra low rate sampling based on compressed sensing[J].IEEE Trans.On Circuits and Systems-Ⅱ:Express Briefs,2008,55(4):379-383.
  • 5Cand,S E J.Ridgelets:theory and applications[I)].Stanford.Stanford University.1998.
  • 6E Candès,D L Donoho.Curvelets[R].USA:Department of Statistics,Stanford University.1999.
  • 7E L Pennec,S Mallat.Image compression with geometrical wavelets[A].Proc.of IEEE International Conference on Image Processing,ICIP'2000[C].Vancouver,BC:IEEE Computer Society,2000.1:661-664.
  • 8Do,Minh N,Vetterli,Martin.Contourlets:A new directional multiresolution image representation[A].Conference Record of the Asilomar Conference on Signals,Systems and Computers[C].Pacific Groove,CA,United States:IEEE Computer Society.2002.1:497-501.
  • 9G Peyré.Best Basis compressed sensing[J].Lecture Notes in Ccmputer Science,2007,4485:80-91.
  • 10V Temlyakov.Nonlinear Methods of Approximation[R].IMI Research Reports,Dept of Mathematics,University of South Carolina.2001.01-09.

共引文献765

同被引文献14

引证文献3

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部