期刊文献+

智能音频检索技术在侦收系统中的应用研究 被引量:1

Research on Intelligent Audio Information Retrieval Technology Application of Electronic Reconnaissance Receiving and Processing System
下载PDF
导出
摘要 为提高各类侦收系统的自动化程度,提出基于智能音频检索技术的侦收设备工作原理,讨论其特点,并给出提高检索效率的方法以及语种识别、关键词检索、关键字语音检索、关键音频检索及关键说话人检索等工作模型。对于基于移动通信网的多通道、基于无线电侦测的单通道侦收系统和internet等公共信息网,分别给出了智能音频检索技术应用的工作原理框图及实现方式,希望研究结果能够对信息监管起到重大的推动作用,最终达到为国家安全服务的目的。 In order to increase electronic reconnaissance receiving and processing system automation, its working principle based on intelligent audio information retrieval technology was proposed and its characteristics was discussed.These methods for improving the retrieval efficiency was given. Language identification, keyword spotting, keyaudio spotting and keyspeaker verification working principle model were proposed. These working principle diagrams based on intelligent audio information retrieval system of electronic reconnaissance receiving and processing system based on both the multi-channel mobile communication network and the single channel radio detection system and public information network such as Internet are presented. It is hoped that this research results can play a major role of information supervision,and eventually serve for the national security.
作者 石军 SHI Jun(Institute of Information Security Technology, Beijing State Secrets Bureau, Beijing 100005, China)
出处 《通信技术》 2016年第10期1415-1418,共4页 Communications Technology
关键词 元信息 语种识别 关键词检索 音频检索 侦收设备 recta-information language identification keyword spotting intelligent audio information retrieval electronic reconnaissance receiving and processing system
  • 相关文献

参考文献3

二级参考文献15

  • 1欧智坚 罗骏 谢达东.多功能语音/音频信息检索系统的研究与实现[A]..全国网络与信息安全技术研讨会2004论文集[C].北京,2004.106-112.
  • 2WILPON J,RABINER L,LEE L,et al.Automatic recognition of keywords in unconstrained speech using hidden markov models[J].IEEE Trans on Acoustics,Speech and Signal Processing,1990,38(11):1870-1878.
  • 3GAROFOLO J,AUZANNE C,VOORHEES E.The TREC spoken document retrieval track:a success story[A].Proc of TREC-8[C].1999.107-116.
  • 4JOHNSON S E,JOURLIN P,MOORE G L,et al.The cambridge university spoken document retrieval system[A].Proc of the IEEE International Conference on Acoustics,Speech,and Signal Processing[C].1999.49-52.
  • 5LIU Y,HARPER M P,JOHNSON M T,et al.The effect of pruning and compression on graphical representations of the output of a speech recognizer[J].Computer Speech and Language,2003,7(4):329-356.
  • 6CARDILLO P S,CLEMENTS M,MILLER M S.Phonetic searching vs LVCSR:how to find what you really want in audio archives[J].International Journal of Speech Technology,2002,5(1):9-22.
  • 7YOUNG S J,RUSSEL N H,THORNTON J H S.Token passing:a simple conceptual model for connected speech recognition systems[EB/OL].http://svr-www.eng.cam.ac.uk,1989.
  • 8LEGGETTER C J,WOODLAND P C.Maximum likelihood linear regression for speaker adaptation of continuous density HMM[J].Computer Speech and Language,1995,9(1):171-186.
  • 9ZHAO Q W,WANG Z Y,LU D J.A study of duration in continuous speech recognition based on DDBHMM[A].Proc 6rd European Conf on Speech Communication and Technology (Eurospeech'99)[C].Budapest,1999.1511-1514.
  • 10WESSEL F,SCHLUTER R,MACHERTY K,et al.Confidence measures for large vocabulary continuous speech recognition[J].IEEE Trans on Speech and Audio Processing,2001,9(3):288-298.

共引文献14

同被引文献3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部