期刊文献+

Delta机器人工作空间与力矩传递性能分析 被引量:3

Analysis of a Delta Robot's Workspace and Torque Transmissibility
下载PDF
导出
摘要 为分析Delta机器人在实际运用中的负载能力大小的分布情况,研究了Delta机器人的力矩传递性能。提出了一种基于蒙特卡洛法的绘制机器人工作空间简单高效的方法;推导了机器人的运动学逆解表达式,选取连续可达工作空间逆解表达式唯一的区域作为实际工作空间,并以此确定Delta机器人能够抓取的物体其理论最大高度;绘制机器人在实际工作空间的z轴方向不同截面上的力矩传递性能图谱。仿真结果表明:Delta机器人的力矩传递性能较好的位置总体呈对称分布,且是小区域集中,整体散布,负载能力随截面高度的增加而增大。 In order to analyze the distribution of load capacity of Delta robot in practical application,the torque transmissibility of robot was discussed. A simple and efficient method based on Monte Carlo to draw Delta's workspace was presented. Expression of inverse kinematics of the robot was derived,selecting the area of continuous reachable workspace as practical workspace whose inverse kinematics expression was unique,and based on this to determine the theoretical maximum height of an object for a Delta robot to grasp. Graphs of torque transmissibility of the robot were drawn on different cross sections along the z axis in practical workspace of the robot. The results of simulation indicate that the positions of better torque transmissibility of Delta robot are generally symmetrical distributed,small-area concentrated and overall scattered,and the load capacity increases with increasing the height of the cross section.
出处 《机床与液压》 北大核心 2016年第17期8-11,7,共5页 Machine Tool & Hydraulics
基金 国家自然科学基金资助项目(51375095)
关键词 Delta机器人 蒙特卡洛法 工作空间 运动学逆解 力矩传递性能 Delta robot Monte Carlo methods Workspace Inverse kinematics Torque transmissibility
  • 相关文献

参考文献2

二级参考文献20

  • 1Salisbury J K, Craig J J. Articulated hands - Force control and kinematic issues[J]. International Journal of Robotics Research, 1982, 1(1): 4-17.
  • 2Gosselin C, Angeles J. A global performance index for the kinematic optimization of robotic manipulators[J]. Journal of Mechanical Design, 1991, 113(3): 220-226.
  • 3Gosselin C, Angeles J. New performance index for the kinematic optimization of robotic manipulators[J]. American Society of Mechanical Engineers, Design Engineering Division, 1988, 15-3(3): 441-447.
  • 4Asada H. Geometrical representation of manipulator dynamics and its application to ann design[J]. Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME, 1983, 105(3): 131-135.
  • 5Asada H, Cro Granito J A. Kinematic and static characterization of wrist joints and their optimal design[C]//IEEE International Conference on Robotics and Automation. Piscataway, NJ, USA: IEEE, 1985: 244-250.
  • 6Yoshikawa T. Dynamic manipulability of robot manipulators[J]. Journal of Robotic Systems, 1985, 2(1): 113-124.
  • 7Melchiorri C. Comments on "global task space manipulability ellipsoids for multiple-ann system" and further considerations[J]. IEEE Transactions on Robotics and Automation, 1993, 9(2): 232-236.
  • 8Tsai L W, Walsh G C, Stamper R E. Kinematics of a novel three DOF translational platform[C]//IEEE International Conference on Robotics and Automation. Piscataway, NJ, USA: IEEE, 1996: 3446-3451.
  • 9Li Y M, Xu Q S. Dynamic analysis of a modified DELTA parallel robot for cardiopulmonary resuscitation[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway, NJ, USA: IEEE, 2005: 233-238.
  • 10Tsumaki Y, Naruse H, Nenchev D N, et al. Design of a compact 6-DOF haptic interface[C]//IEEE International Conference on Robotics and Automation. Piscataway, NJ, USA: IEEE, 1998: 2580-2585.

共引文献66

同被引文献12

引证文献3

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部