期刊文献+

差示扫描量热法分析光滑鳖甲抗冻蛋白ApAFP914 TXT基序对抗冻活性的影响 被引量:1

Analysis of the TXT Motifs' Effect on the Antifreeze Activity of Antifreeze Protein Ap AFP914 from Anatolica polita borealis Using Differential Scanning Calorimetry
下载PDF
导出
摘要 研究光滑鳖甲抗冻蛋白Ap AFP914及其突变体的原核表达及活性,推测TXT基序的突变对昆虫抗冻蛋白抗冻活性的影响。通过定点突变新疆荒漠昆虫光滑鳖甲抗冻蛋白apafp914基因TXT基序的规则位点个数,并亚克隆至p ET32a原核表达载体,转化大肠杆菌,Ni-NTA纯化得到融合蛋白Trx A-Ap AFP914及3种突变体蛋白;利用Swis S-Model服务器预测分析了Ap AFP914蛋白的三维结构;通过差示扫描量热法测定Trx A-Ap AFP914及其突变体的热滞活性。结果显示,4种融合蛋白分子量均在30 k D左右;且突变蛋白Trx A-A19T具有最高的热滞活性,而突变体Trx A-T33F和Trx A-T33&45F的热滞活性显著低于未突变的Trx A-914。研究结果表明昆虫抗冻蛋白的TXT基序越规则其具有的热滞活性越高。 This work is to study the prokaryotic expression and activities of antifreeze protein ApAFP914 and its mutants, and deduce the effects of mutations of TXT motifs on the insect' s antifreeze protein' s activities. By site directed mutagenesis in regular site number of TXT motifs of gene apafp914 in Anatoli#a polita borealis, then the mutant gene was cloned into pET32a vector, and expressed in Escherichia coli BL21 ( DE3 ). The fusionprotein TrxA-ApAFP914 and the other three mutant proteins were purified using Ni-NTA. The three- dimensional structure of the protein ApAFP914 was predicted and analyzed using SwisS-Model server. The thermal hysteresis activities of TrxA- ApAFP914' s and its mutants were detected by differential scanning calorimetry ( DSC ). The results showed that the molecular weight of the 4 fusion proteins was about 30 kD, and the mutant protein TrxA-A19T had the highest thermal hysteresis activity, while the thermal hysteresis activities of mutant TrxA-T33&45F and TrxA-T33F were significantly lower than un-mutated TrxA-914. The results indicate that the more regular the TXT motif of insect antifreeze protein is, the stronger the thermal hysteresis activity of it is.
出处 《生物技术通报》 CAS CSCD 北大核心 2016年第9期210-217,共8页 Biotechnology Bulletin
基金 国家自然科学基金项目(31200588)
关键词 光滑鳖甲抗冻蛋白 TXT基序 差示扫描量热法(DSC) antifreeze protein in Anatolicapolita borealis TXT motifs differential scanning calorimetry ( DSC )
  • 相关文献

参考文献18

  • 1Duman JG,Bennett V,Sformo T,et al. Antifreeze proteins in Alaskan insects and spiders[J].Journal of Insect Physiology,2004,50(4):259–266. DOI:10.1016/j.jinsphys.2003.12.003.
  • 2Graham lA,Davies PL. Glycine-rich antifreeze proteins from snow fleas[J].Science,2005,310(5747):461–465. DOI:10.1126/science.1115145.
  • 3Scotter AJ,Marshall CB,Graham LA,et al. The basis for hyperacti-vity of antifreeze proteins[J].Cryobiology,2006,53(2):229–239. DOI:10.1016/j.cryobiol.2006.06.006.
  • 4Davies PL,Jason B,Kuiper MJ,et al. Structure and function of antifreeze proteins[J].Philosophical Transactions of the Royal Society of London,2002,357(1423):927–935. DOI:10.1098/rstb.2002.1081.
  • 5Mao XF,Liu ZY,Ma J,et al. Characterization of a novel beta-helix antifreeze protein from the desert beetle Anatolica polita[J].Cryobiology,2011,62(2):91–99. DOI:10.1016/j.cryobiol.2011.01.001.
  • 6Doucet D,Tyshenko MG,Kuiper MJ,et al. Structure-function relationships in spruce budworm antifreeze protein revealed by isoform diversity[J].Eur J Biochem,2000,267(19):6082–60828. DOI:10.1046/j.1432-1327.2000.01694.x.
  • 7Friis DS,Kristiansen E,Von solms N,et al. Antifreeze activity enhancement by site directed mutagenesis on an antifreeze protein from the beetle Rhagium mordax[J].FEBS Lett,2014,588(9) : 1767–1772. DOI:10.1016/j.febslet.2014.03.032.
  • 8Bar M,Celik Y,Fass D,et al. Interactions of β-helical antifreeze protein mutants with ice[J].Crystal Growth and Design,2008,8(8):2954–2963. DOI:10.1021/cg800066g.
  • 9Mao X,Liu Z,Li H,et al. Calorimetric studies on an insect antifreeze protein ApAFP752 from Anatolica polita[J].Journal of Thermal Analysis & Calorimetry,2011,104(1):343–349.
  • 10Liu ZY,Li HL,Pang H,et al. Enhancement effect of solutes of low molecular mass on the insect antifreeze protein ApAFP752 from Anatolica polita[J].J Therm Anal Calorim,2015,120(1):307–315. DOI:10.1007/s10973-014-4171-y.

二级参考文献34

  • 1谢秀杰,贾宗超,魏群.抗冻蛋白结构与抗冻机制[J].细胞生物学杂志,2005,27(1):5-8. 被引量:20
  • 2邵强,李海峰,刘国生,闫清华.抗冻蛋白的抗冻活性及其测定方法[J].平原大学学报,2005,22(4):111-113. 被引量:10
  • 3李璐,王晓军,赵安民.新疆雪莲新的内切几丁质酶类冷诱导基因的分离、克隆和测序[J].植物生理学通讯,2005,41(6):731-736. 被引量:6
  • 4吕国栋,马纪.检测抗冻蛋白生物学活性两种方法的比较[J].新疆大学学报(自然科学版),2007,24(1):77-80. 被引量:3
  • 5冯从经,陆剑锋,吕文静,董秋安,符文俊.抗冻蛋白研究进展[J].江苏农业学报,2007,23(5):481-486. 被引量:10
  • 6HemanChao,Robert S.Hodges,Cyril M.Kay,Sherry Y.Gauthier,Peter L.Davies.A natural variant of type I antifreeze protein with four ice‐binding repeats is a particularly potent antifreeze[J]. Protein Science . 2008 (6)
  • 7Jing-Xia Liu,Yan-Hua Zhai,Jian-Fang Gui.Molecular characterization and expression pattern of AFPIV during embryogenesis in gibel carp( Carassiu auratus gibelio )[J]. Molecular Biology Reports . 2009 (7)
  • 8Yougang Mao,Yong Ba.Insight into the Binding of Antifreeze Proteins to Ice Surfaces via 13 C Spin Lattice Relaxation Solid-State NMR[J]. Biophysical Journal . 2006 (3)
  • 9J A Raymond,A L DeVries.Adsorption inhibition as a mechanism of freezing resistance in polar fishes. Proceedings of the National Academy of Sciences of the United States of America . 1977
  • 10Patel, Shruti N.,Graether, Steffen P.Structures and ice-binding faces of the alaninerich type I antifreeze proteins. Biochemistry and Cell Biology . 2010

共引文献27

同被引文献34

引证文献1

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部