期刊文献+

基于卢比变换码的分解重组编码算法

Decomposition and Restructuring Encoding Algorithm for LT Codes
下载PDF
导出
摘要 LT(卢比变换)码是第一个能够实际应用的数字喷泉码。尽管采用BP(置信)译码算法的LT码的编译码复杂度已接近线性,但依然会增加较大的时延。文章提出了一种DRE(分解重组编码)算法,对所有信息包分解后重新组合,分成多组并行编码,有效地降低了编码时间和译码的操作数,减少了数据传输时延。该编码方法可适用于不同度分布函数。仿真结果表明,当信息包数量K=1 000和2 000时,采用同样的度分布可以达到NRE(非重复编码)的性能,并能够减少约75%的编码时间和大量的译码操作数。 LT codes are the first realization of the digital Fountain codes. LT codes using BP decoding algorithm which means the complexity is close to that of linear algorithm. However it still suffers from great delay. In order to solve this problem, we propose a decomposition and restructuring encoding algorithm. The algorithm first decomposes and regroups K information packets, and then divides the packets into a plurality of sets for parallel encoding. The algorithm can effectively reduce the en- coding time and operation of decoding with reduced data transmission delay. The encoding method can be applied to various modifications distribution. In the case of K = 1 000 and K = 2 000 and the same degree distribution, the simulation results show that it can achieve Non-Repetitive Encoding (NRE)algorithm performance with 75 % encoding time reduction and less decoding operands.
作者 黄胜 季瑞军 杨晓非 HUANG Sheng JI Rui-jun YANG Xiao-fei(Key Laboratory of Optical Fiber Communication and Network Technology, Chongqing University of Posts and Telecommunications, Chongqing 400065, Chin)
出处 《光通信研究》 北大核心 2016年第4期12-15,共4页 Study on Optical Communications
基金 国家自然科学基金资助项目(61371096 61171158) 重庆市自然科学基金资助项目(cstc2013jcyjA40052) 重庆市教委科学技术研究项目(KJ130515)
关键词 卢比变换码 置信译码 度分布 LT codes BP decoding degree distribution
  • 相关文献

参考文献1

二级参考文献11

  • 1胡君萍,陈宁.LDPC码译码算法的性能分析[J].武汉理工大学学报(信息与管理工程版),2006,28(7):71-74. 被引量:4
  • 2翟政安 ,罗伦 ,时信华 .深空通信信道编译码技术研究[J].飞行器测控学报,2005,24(3):1-5. 被引量:17
  • 3卢守信.喷泉码技术研究[J].中国高新技术企业,2007(6):101-102. 被引量:4
  • 4Mackay D J C. Fountain codes[J].IEE Communication Proceeding Online, 2005,152(6) : 1062 - 1068.
  • 5Mackay D J C. Fountain codes[C]//IEE Workshop on Discrete Event Systems. Cagliari, Italyt, 1998.
  • 6Luby M. LT codes[C] // 43rd Annual IEEE Symposium on Foundations of Computer Science. Vancouver, BC, Canada, 2002: 271-282.
  • 7Cesarone Robert J, Abraham Douglas S, Deutsch Leslie J. Prospects for a next-generation deep-space network[C]//Proceedings of the IEEE, 2007, 95(10): 1904.
  • 8Palanki R, Yedidia J S. Rateless codes on noise channels[EB/ OL]. TR-2003 - 124, http://www. merl. com.
  • 9Caire G, Shamai S, Shokrollahi A, et al. Universal variablelength data compression of binary sources using fountain codes [J]. IEEE Information Theory Workshop. San Antonio, Texas, USA, 2004 : 123 - 128.
  • 10Cataldi P, Shatarski M P, Grangetto M, et al. Implementation and performance evaluation of LT and Raptor codes for multimedia applications[J]. International Conference on Intelligent Information Hiding and Multimedia Signal Processing, 2006: 263-266.

共引文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部