期刊文献+

基于压缩感知的加速前向后向匹配追踪算法 被引量:5

Acceleration Forward-backward Pursuit Algorithm Based on Compressed Sensing
下载PDF
导出
摘要 前向后向匹配追踪(FBP)算法作为一个新颖的两阶段贪婪逼近算法,因为较高的重构精度和不需要稀疏度作为先验信息的特点,受到了人们的广泛关注。然而,FBP算法必须运行更多的时间才能得到更高的精度。鉴于此,该文提出加速前向后向匹配追踪(AFBP)算法。该算法利用每次迭代中候选支撑集的信息,实现对已删除原子的再次加入,以此减少算法迭代次数。通过不同非零项分布的稀疏信号和稀疏图像的仿真结果表明,相对于FBP算法,该文提出的方案在不降低重构精度的同时,大幅降低了算法运行时间。 The Forward-Backward Pursuit (FBP) algorithm, a novel two stage greedy approach, receives wide attention due to the high reconstruction accuracy and the feature without prior information of the sparsity. However, FBP has to run more time to get a higher precision. To alleviate this drawback, this paper proposes the Acceleration Forward-Backward Pursuit (AFBP) algorithm based on Compressed Sensing (CS). In order to reduce the number of iterations, the algorithm exploits the information available in the support estimate to add the deleted atoms again. The run time of AFBP is sharply shorter than that of FBP, while the precision of AFBP is not lower than FBP. The efficacy of the proposed scheme is demonstrated by simulations using random sparse signals with different nonzero coefficient distributions and a sparse image.
出处 《电子与信息学报》 EI CSCD 北大核心 2016年第10期2538-2545,共8页 Journal of Electronics & Information Technology
基金 国家自然科学基金(61171140) 高等学校博士学科点专项科研基金(20130031110032)~~
关键词 压缩感知 贪婪算法 前向后向搜索 稀疏信号重构 Compressed Sensing (CS) Greedy algorithms Forward-backward search Sparse signal reconstruction
  • 相关文献

参考文献17

  • 1DONOHO D L. Compressed sensing[J]. IEEE Transactions on Information Theorg, 2006, 52 (4): 1289-1306.
  • 2CANDES E J, ROMBERG J, and TAO T. Robust uncertainty principles: Exact signal reconstruction fromhighly incomplete frequency information[J]. IEEE Transactions on Information Theory, 2006, 52(2): 489-509.
  • 3李鹏,王建新,曹建农.无线传感器网络中基于压缩感知和GM(1,1)的异常检测方案[J].电子与信息学报,2015,37(7):1586-1590. 被引量:9
  • 4蒋明峰,刘渊,徐文龙,冯杰,汪亚明.基于全变分扩展方法的压缩感知磁共振成像算法研究[J].电子与信息学报,2015,37(11):2608-2612. 被引量:5
  • 5QU X, HOU Y, FAN L, et al. Magnetic resonance image reconstruction from undersampled measurements using a patch-based nonlocal operator[J]. Medical Image Analysis, 2014, 18(6): 843-856.
  • 6MALLAT S G and ZHANG Z. Matching pursuits with time-frequency dictionaries[J]. IEEE Transactions on Signal Processing, 1994, 41(12): 3397-3415.
  • 7TROPP J and GILBERT A C. Signal recovery from random measurements via orthogonal matching pursuit[J]. IEEE Transactions on Information Theory, 2007, 53(12): 4655-4666.
  • 8DONOHO D L, TSAIG Y, DRORI I, et al. Sparse solution of underdetermined systems of linear equations by stagewise orthogonal matching pursuit[J]. IEEE Transactions on Information Theory, 2012, 58(2): 1094-1121.
  • 9DAI W and MILENKOVIC O. Subspace pursuit for compressive sensing signal reconstruction[J]. IEEE Transactions on Information Theory, 2009, 55(5): 2230-2249.
  • 10NEEDELL D and TROPP J A. CoSaMP: Iterative signalrecovery from incomplete and inaccurate samples[J]. Applied and Computational Harmonic Analysis, 2009, 26(3): 301-321.

二级参考文献27

  • 1Xie Miao, Hu Jian-kun, Han Song, et al: Scalable hypergrid k-NN-based online anomaly detection in-network aggregation for wireless sensor networks[J]. IEEE Transactions on Parallel and Distributed Systems, 2013, 24(8): 1661-1670.
  • 2Xia Yu, Zhao Zhi-feng, and Zhang Hong-gang. Distributedanomaly event detection in wireless networks using compressed sensing[C]. 2011 llth International Symposium Communications and Information Technologies, Hangzhou, China, 2011: 250-255.
  • 3Wang Jin, Tang Shao-jie, Yin Bao-cal, et al: Distributed compressive sampling for lifetime optimization in dense wireless sensor networks through intelligent compressive sensing[C]. IEEE International Conference on Computer Communications, Orlando, FL, USA, 2012: 603-611.
  • 4Sun Bo, Shan Xue-mei, Wu Kui, et al: Anomaly detection based secure in-network aggregation for wireless sensor networks[J]. IEEE Systems Journal, 2013, 7(1): 13-25.
  • 5Vempaty A, Han Y, and Varshney P. Target localization in wireless sensor networks using error correcting codes[J]. IEEE Transactions on Information Theory, 2014, 60(1): 697-712.
  • 6Cheng C T, Tse C K, and Lau F C M. A delay-aware data collection network structure for wireless sensor networks[J]. IEEE Sensors Journal, 2011, 11(3): 699-710.
  • 7Eldar Y C, Kuppinger P, and Bolcskei H. Block-sparse signals: uncertainty relations and efficient recovery[J]. IEEE Transactions on Signal Processing, 2010, 58(6): 3042-3054.
  • 8Luo R C and Chen O. Mobile sensor node deployment and asynchronous power management for wireless sensor networks[J]. IEEE Transactions on Industrial Electronics, 2012, 59(5): 2377-2385.
  • 9Cand~s E J, Romberg J, and Tao T. Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information[J]. IEEE Transactions on Information Theory, 2006, 52(2): 489-509.
  • 10Donoho D L. Compressed sensing[J]. IEEE Transactions on Information Theory, 2006, 52(4): 1289-1306.

共引文献12

同被引文献30

引证文献5

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部