期刊文献+

交通限制和软时间窗条件下的车辆路径问题及其蚁群算法改进 被引量:2

Improved Ant Colony Algorithm for VRP with Traffic Restriction and Soft Time Window
下载PDF
导出
摘要 根据城市交通限制和客户软时间窗要求对快递配送业务的影响,提出交通惩罚成本和时间惩罚成本两个概念,将这两项成本与VRP问题相结合,提出VRPTRSTW问题。根据VRPTRSTW问题描述构建VRPTRSTW数学模型,该模型包含固定成本、距离成本、交通惩罚成本和时间惩罚成本四项优化目标。依据VRPTRSTW模型求解要求,改进蚁群系统的蚂蚁转移概率公式和信息素更新规则。通过实际案例对改进的蚁群算法求解VRPTRSTW问题的有效性加以验证。 In this paper,in light of the impact of urban traffic restriction and customer soft time window on the express delivery business,we proposed the concept of traffic penalty cost and time penalty cost and combined the two with the VRP to become the VRPTRSTW.Next,according to the description of the VRPTRSTW,we built its mathematical model which included four optimization targets,namely the fixed cost,distance cost,traffic penalty cost and time penalty cost.Then,based on the conditions for the solution of the model and through an empirical case,we improved the migration probability equation and pheromone updating rule of the ant colony system.At the end,we verified the effectiveness of the improved ant colony algorithm in solving the VRPTRSTW.
出处 《物流技术》 2016年第9期91-96,共6页 Logistics Technology
关键词 车辆路径问题 交通限制 软时间窗 交通惩罚成本 时间惩罚成本 VRPTRSTW 蚁群算法 VRP traffic restriction soft time window traffic penalty cost time penalty cost VRPTRSTW ant colony algorithm
  • 相关文献

参考文献14

  • 1黄飞.基于B2C模式我国快递行业发展影响因素分析[J].中国集体经济,2016(22):16-17. 被引量:4
  • 2朱永升,韩伯棠,夏平,李振键.交通限制条件下城市物流配送路线优化选择[J].武汉理工大学学报(交通科学与工程版),2004,28(3):391-394. 被引量:13
  • 3Br~ysy O,Gendreau M.Vehicle routing problem with time win- dows, part I:Route construction and local search algorithms[J]. Transportation Seience,2005,39:104-118.
  • 4Urazghildiiev I,Ragnarsson R,Ridderstrom P,et al.Vehicle classification based on the radar measurement of height pro- files[J].IEEE Transactions on Intelligent Transportation Sys- tems,2007,8(2):245-253.
  • 5段凤华,符卓.B2C电子商务环境下物流配送路径模型与算法[J].计算机应用,2009,29(2):580-582. 被引量:14
  • 6Sarildis D,Power S.A heuristic method for the open vehicle routing problem[J].Journal of the Operational Research Soci- ety,2000,51:564-573.
  • 7Brandao J.A tabu search algorithm for the open vehicle rout- ing problem[J].European Journal of Operational Research, 2004,157:552-564.
  • 8崔雪丽,马良,范炳全.车辆路径问题(VRP)的蚂蚁搜索算法[J].系统工程学报,2004,19(4):418-422. 被引量:48
  • 9Ghoseiri K,Ghannadpour S F.Muhi-objective vehicle routing problem with time windows using goal programming and ge- netic algorithm[J].Applied Soft Computing,2010,(10):1096- 1107.
  • 10Fu Z,Eglese R,Li L Y O.A unified tabu search algorithm for vehicle routing problems with soft time windows[J].Journal of the Operational Research Society,2008,59(5):663-673.

二级参考文献39

  • 1王建军,王吉平,彭志群.城市道路网络合理等级级配探讨[J].城市交通,2005,3(1):37-42. 被引量:31
  • 2钟石泉,贺国光.有时间窗约束车辆调度优化的一种禁忌算法[J].系统工程理论方法应用,2005,14(6):522-526. 被引量:35
  • 3King G F. Driver performance in highway tasks. Transportation Research Record, 1986,1093:1~11
  • 4王朝瑞.图论.北京:北京理工大学出版社,2001.12
  • 5[1]Laporte G. The vehicle routing problem: An overview of exact and approximation algorithms [ J ]. European Journal of Operational Research, 1992, 5 (9): 345-358.
  • 6[2]Dorigo M, Maniezzo V, Colorni A. Ant system: Optimization by a colony of cooperation agents[J]. IEEE Transactions on Systems,Man, and Cybernetics, 1996, 26 (1): 29-41.
  • 7[3]Colorni A, et al. Heuristics from nature for hard combinatorial optimization problems[J]. International Transactions in Operational Research, 1996, 3 (1): 1-21.
  • 8[11]Ma Liang, Yao Jian. A new alg orithm for integer programming problem[ A]. Proc. of 2001 Int. Conf. on Management Science & Engineering[C]. Harbin: Harbin Institute of Technology Press, 2001. 534-537.
  • 9CHAO Yi-ming. A tabu search method for the truck and trailer rou- ting problem[ J]. Computer and Operations Research,2002,29 (1) :33-51.
  • 10DORIGO M, GAMBARDELLA L M. Ant colony system: a cooperative learning approach to the traveling salesman problem[ J]. IEEE Trans on Evolutionary Computations, 1997,1 ( 1 ) :67-68.

共引文献156

同被引文献21

引证文献2

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部