期刊文献+

基于图像统计特征的新旧纸币识别算法 被引量:3

An Recognition Algorithm Based on Statistical Feature for Damaged Degree of Paper Money
下载PDF
导出
摘要 如何将旧币分离出来是银行、金融等机构中一项非常重要的工作.针对旧币分离问题,本文提出了基于统计特征的旧币分离算法.首先根据纸币统计特征构建训练样本集,包括纸币灰度值图像的标准差和间断强度等;其次在训练样本集上构建学习向量量化神经网络模型,建立输入与输出之间的关系.仿真实验结果表明,文中算法提高了分离正确率. How to discriminate the old banknotes from the banknotes is one of important task in financial institution. For the separation of old banknotes,the separation algorithms for the old banknotes was proposed based on statistical feature. Firstly,the training set was formed by the statistical features,which include the standard deviation and the discontinuity degree of the corresponding gray image for banknotes. Secondly,Learning Vector Quantization neural network was used to train the relation between input and output. Experimental results showed that the proposed algorithms can improve the separation accuracy.
出处 《信阳师范学院学报(自然科学版)》 CAS 北大核心 2016年第4期617-620,共4页 Journal of Xinyang Normal University(Natural Science Edition)
基金 河南省教育厅科学技术研究重点项目(13B520267) 信阳师范学院青年基金项目 信阳师范学院青年骨干教师资助计划 河南省教育厅信息技术项目(ITE12155)
关键词 统计特征 损伤度 纸币识别 statistical feature damaged degree paper money recognition
  • 相关文献

参考文献9

  • 1MELIN P, AMEZCUA J, VALDEZ F, et al. A new neural network model based on the LVQ algorithm for multi-class classification of arrhythmi- as[J]. Information Sciences, 2014, 279( 1): 483-497.
  • 2盖杉,刘鹏,刘家锋,唐降龙.基于Haar小波和模糊逻辑的纸币图像特征提取方法[J].高技术通讯,2010,20(11):1149-1155. 被引量:5
  • 3吴忠,朱国龙,黄葛峰,吴建国.基于图像识别技术的手写数字识别方法[J].计算机技术与发展,2011,21(12):48-51. 被引量:21
  • 4YOUN S, CHOI E, BAEK Y, et al. Efficient muhi-currency classification of CIS banknotes[ J]. Neurocomputing, 2015, 156( 1 ) : 22-32.
  • 5CHOUDHRI E U, HAKURA D S. The exchange rate pass-through to import and export prices:The role of nominal rigidities and currency choice [J]. Journal of International Money and Finance, 2015, 51(3) : 1-25.
  • 6SARGANO A B, SARFRAZ M, HAQ N U. An intelligent system for paper currency recognition with robust features [ J]. Journal of Intelligent & Fuzzy Systems, 2014, 27(4) : 1905-1913.
  • 7SANCHEZ M A, CASTILLO O, CASTRO J R, et al. Fuzzy granular gravitational clustering algorithm for multivariate data[ J]. Information Sci- ences, 2014, 279(2) : 498-511.
  • 8HANBAY K, ALPASLAN N, TALU M F, et al. Continuous rotation invariant features for gradient-based texture classification [ J ]. Computer Vision and Image Understanding, 2015, 132( 1 ) : 87-101.
  • 9DEBNATH K K, AHMED S U, SHAHJAHAN M, et al. A paper currency recognition system using negatively correlated neural network en- semble[J]. Journal of Multimedia, 2010, 5(6): 560-567.

二级参考文献13

  • 1杜敏,辛大欣.基于混合特征提取的手写体数字识别方法的研究[J].西安交通大学学报,1996,30(9):93-98. 被引量:4
  • 2Takeda F,Omatu S.Bank note recognition system using neural network with random masks.In:Proceedings of the World Congress on Neural Networks,Portland,USA,1993.241-244.
  • 3Takeda F,Omatu S.High speed paper currency recognition by neural networks.IEEE Transactions on Neural Networks,1995,6(1):73-77.
  • 4Takeda F,Omatu S.A neuro-paper currency recognition method using optimized masks by genetic algorithm.In:Proceedings d the 1995 IEEE International Conference on Systems,Man and Cybernetics,Vancouver,BC,Canada,1995.4367-4371.
  • 5Goupillaud P,Grossmann A,Morlet J.Cycle-octave and related transforms in seismic signal analysis.Geoexploration,1984,23(1):85-102.
  • 6Mallat S.A theory for multiresolution signal decomposition:the wavelet representation.IEEE Transactions on Pattern Analysis and Machine Intelligence,1989,11(7):674-693.
  • 7Chandrashekhar M,Ganguli R.Uncertainty handling in structural damage detection using fuzzy logic and probabilistic simulation.Mechanical Systems and Signal Processing,2009,23(2):384-404.
  • 8Duch W,Adarnczak R,Grabczewski k.A new raethodology of extraction,optimization and application of crisp and fuzzy logical rules.IEEE Transactions on Neural Networks,2001,12(2):277-306.
  • 9Choi E,Lee J,Yoon J.Feature extraction for bank note classification using wavelet transform.In:Proceedings of the 2006 IEEE International Conference of Pattern Recognition,HongKong,China,2006.934-937.
  • 10Frosini A,Gori M,Priami P.A neural network-based model for paper currency recognition and verification.IEEE Trans actions on Neural Networks,1996,7(6):1482-1490.

共引文献24

同被引文献22

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部