期刊文献+

激光冲击强化K403镍基高温合金表面纳米化(英文) 被引量:5

Nanocrystallization of Ni-based superalloy K403 by laser shock peening
下载PDF
导出
摘要 针对K403镍基高温合金铸造构建易发生裂纹、腐蚀、磨损的问题,采用激光冲击强化技术对K403薄片试件进行处理,使试件表面纳米化提高材料力学性能。利用X射线衍射、SEM扫描电镜、TEM透射电镜分析了材料表面纳米晶层的形成机理。实验结果表明:激光诱导的高压等离子体冲击波可以在样品表面上形成226 nm厚的纳米晶层;从SEM和TEM结果可以看出,激光冲击强化不会改变材料表面物相。在高冲击波压力下,K403试样表面组织产生了位错和纳米级晶粒细化。 The surface of the K403's thin slice specimen uses laser shock processing technology in order to strengthen the surface on the nanocrystallization, located on the surface of the specimen, for the cast parts of the nickel-based superalloy K403, which produced cracks, corrosion, and wear. The formation mechanism of the nano-crystal layer on the surface was analyzed by these technologies using X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The results showed that a nanocrystalline layer of 226 nanometers thick could be prepared by laser- induced high-pressure plasma shock wave on the specimen's surface. The results of XRD and SEM showed that it will not change the phase structure by that laser shock processing the refined surface grain structure. Under the high pressure, the surface microstructure of K403 specimen generated a great number of dislocations and refinement grains into nanoscaie.
出处 《红外与激光工程》 EI CSCD 北大核心 2016年第9期242-247,共6页 Infrared and Laser Engineering
基金 国家自然科学基金青年项目(51405507)
关键词 激光冲击强化 纳米化 透射电镜 位错 LSP nanocrystallization TEM dislocation
  • 相关文献

参考文献3

二级参考文献45

  • 1C.Zhao, J.Vleugels.Alumina/Ce-Tzp Functionally Graded Materials by Electrophoretic Deposition[J].材料科学与工程学报,2000,20(z1):250-254. 被引量:20
  • 2Ji W P. Science in China[J], 2008, 53(1): 83.
  • 3Xu B S, Ou Z W, Ma S N. China Mechanical Engineering[J], 2000, 11(6): 707 (in Chinese).
  • 4Li D, Zhao Y Q. Material Reviews[J], 2005, 19(F11): 421.
  • 5He T T, Xiong Y, Guo Z Q et al. JMater Sci Technol[J], 2011, 27(9): 793.
  • 6Tu F H, Pan J, Liu X C J. Ningbo University (NSEE) [J], 2009, 22 (3): 414 (in Chinese).
  • 7Ba D M, Ma S N, Li C Q. JMater Sci Technol[J], 2007, 15(3): 342.
  • 8Feng A X, Nie G F, Xue W et al. J Mater Sci Teehnol[J], 2012, 48 (2): 205.
  • 9Kong D J, Wu Y Z, Long D et al. J Mater Sci Teehnol[J], 2011, 31(2): 125.
  • 10Wang W B, Chen D L, Zhou L C. Journal of Plasticity Engi- neering[J], 2009, 16(6): 127.

共引文献34

同被引文献36

引证文献5

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部