期刊文献+

基于自适应神经模糊推理系统的刀具磨损监测 被引量:10

Research on Method of Tool Wear Monitoring Based on ANFIS
下载PDF
导出
摘要 为精确地监测高速铣床刀具在加工过程中的刀具磨损量,通过采集高速铣床加工过程中的振动信号、电流信号和噪声信号,经数据预处理与数据融合,建立基于自适应神经模糊推理系统的刀具磨损过程变化模型,实现在高速铣床不停机的前提下对铣床刀具进行状态监控。实验结果显示:针对铣床刀具磨损量的监测平均准确率为95.21%,最大监测准确率为99.74%。这表明文中所采用的方法具有较高的可行性。 In order to monitor the tool wear of a milling machine accurately,the signals of table and spindle vibration,the signals of spindle AC and DC current,and the signals of table and spindle acoustic emission were collected to establish a model of the tool wear process variations basing on ANFIS. At last,the established model will be used to monitor the milling machine tool wear without the machine stop running. According to the output of the model,the average monitoring accuracy is 95. 21%,and the highest monitoring accuracy is up to 99. 74%,which means the method of the paper proposed has a high feasibility.
出处 《兵器装备工程学报》 CAS 2016年第9期115-118,147,共5页 Journal of Ordnance Equipment Engineering
基金 国家自然科学基金面上项目(51475189) 中央高校基本科研业务费专项资金资助(2016YXMS050)
关键词 铣床 刀具磨损监测 ANFIS milling machine tool wear monitoring ANFIS
  • 相关文献

参考文献13

  • 1HAYASHI S R, THOMAS C E, WILDES D G, et al. Tool Break Detection by Monitoring Ultrasonic Vibrations [ J ]. CIRP Annals-Manufacturing Technology, 1988, 37 ( 1 ) : 61-64.
  • 2TARNG Y S. Measurement of quasi-mean resultant force u- sing the vibrational signal of spindle in milling[ J ]. Interna- tional Journal of Machine Tools & Manufacture, 1991,31 (3) :295-304.
  • 3ALTINTAS Y, YELLOWLEY I. In-Process Detection of Tool Failure in Milling Using Cutting Force Models [ J ]. Journal of Engineering for Industry, 1989,111 (2) : 149-157.
  • 4LJUNG L. System identification:Theory for the user. Upper Saddle River:Prentice-Hall, 1999.
  • 5SJOBERG J, ZHANG Q, LJUNG L, et al. Nonlinear black- box modeling in system identification: a unified overview [ J ]. Antomatiea, 1995,31 (95) : 1691-1724.
  • 6BOHLIN T. A case study of grey box identification[J]. Au- tomatica, 1994,30 (94) :307-318.
  • 7CHEN S L, JEN Y W. Data fusion neural network for tool condition monitoring in CNC milling machining[ J]. Interna- tional Journal of Machine Tools & Manufacture, 2000,40 (3) :381-400.
  • 8UROS Z, FRANC C, EDI K. Adaptive network based infer- ence system for estimation of flank wear in end-milling[ J ]. Journal of Materials Processing Technology, 2009,209 ( 3 ) : 1504-1511.
  • 9GILL S S, SINGH R, SINGH J, et al. Adaptive neuro-fuzzy inference system modeling of cryogenically treated AISI M2 HSS turning tool for estimation of flank wear [ J ]. Expert Systems with Applications,2012,39(4) :4171-4180.
  • 10RIZAL M,GHANI ] A,NUAWI M Z,et al. Online tool wear prediction system in the turning process using an adaptive neuro-fuzzy inference system [ J ]. Applied Soft Computing, 2013,13(4) :1960-1968.

二级参考文献6

共引文献4

同被引文献92

引证文献10

二级引证文献58

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部