期刊文献+

视觉地形分类的词袋框架综述 被引量:4

Bag of words for visual terrain classification: a comprehensive study
原文传递
导出
摘要 目的视觉地形分类是室外移动机器人领域的一个研究热点。基于词袋框架的视觉地形分类方法,聚集和整合地形图像的视觉底层特征,建立底层特征统计分布与高层语义之间的联系,已成为目前视觉地形分类的常用方法和标准范式。本文全面综述视觉地形分类中的词袋框架,系统性总结现有研究工作,同时指出未来的研究方向。方法词袋框架主要包括4个步骤:特征提取、码本聚类、特征编码、池化与正则化。对各步骤中的不同方法加以总结和比较,建立地形分类数据集,评估不同方法对地形识别效果的影响。结果对词袋框架各步骤的多种方法进行系统性的分类和总结,利用地形数据集进行评估,发现每个步骤对最后生成的中层特征性能都至关重要。特异性特征设计、词袋框架改进和特征融合研究是未来重要的研究方向。结论词袋框架缩小低层视觉特征与高层语义之间的语义鸿沟,生成中层语义表达,提高视觉地形分类效果。视觉地形分类的词袋框架方法研究具有重要意义。 Objective Unlike a mobile robot in an indoor-structured environment, an outdoor robot should recognize non-ge- ometric terrain characteristics within a reasonable time and adjust the appropriate path, gait, and motion planning strategies to cope with the terrain. Visual terrain classification has become a hot topic in outdoor mobile robot research. The bag-of- visual-words (BOVW) framework, which can aggregate low-level visual descriptors and establish contact with semantic fea- tures, has become the most common approach and an effective paradigm for visual terrain classification. In this paper, we provide a comprehensive study of each step in the BOVW framework for visual terrain classification. Diverse methods in each step are introduced and summarized, and their characteristics and relations are explored. Method The BOVW frame- work includes four main steps : 1 ) feature extraction, 2) codebook generation, 3 ) feature coding, and 4) pooling and normalization. Feature extraction acquires low-level feature information from the terrain images to develop local descriptors. In the codebook generation step, a codebook is formed through clustering. The coding step uses the codebook to map the descriptors in the terrain image to the coding space. Then, coding results are aggregated into a single vector, that is, the mid- level feature, of the fixed length by pooling and normalization. Finally, the mid-level feature is fed into a linear or nonlin- ear classifier, such as SVM, for terrain classification. The diverse methods in each step are summarized and compared sys- tematically. The performances of the method are preliminarily tested on a terrain dataset. Result The BOVW framework for visual terrain classification is reviewed in the paper. We also present a preliminary comparison of different BOVW frame- works for visual terrain classification on the terrain dataset. On the basis of the result, we find that every step is crucial in contributing to the final classification performance, and an improper choice in one step will markedly weaken the effective- ness and efficiency of the visual classification system as a whole. New handcrafted descriptors that are specific to the visual terrain, modified BOVW framework, and feature fusion are three potential research directions. Conclusion Visual terrain classification is an important technology for recognizing non-geometric terrain characteristics for outdoor mobile robots. Com- pared with other sensors, visual information most closely resembles the manner by which humans perceive the environment and provides richer terrain information, and visual terrain classification has become a hotspot issue in outdoor mobile robot technology. However, visual appearances of the same terrain type may exhibit vast differences, and various types of terrain may appear highly similar. Therefore, these issues engender numerous challenges to visual terrain classification. Both effective- ness and efficiency are necessary factors that should be taken into account in the design of the visual terrain classification system. Therefore, studies on the BOVW for visual terrain classification are of considerable significance.
出处 《中国图象图形学报》 CSCD 北大核心 2016年第10期1276-1288,共13页 Journal of Image and Graphics
基金 国家科学技术重大专项基金项目(2012ZX10004801)~~
关键词 视觉地形分类 非几何地形特征危险 词袋框架 编码方法 池化方法 移动机器人 visual terrain classification non-geometric hazard bag of words encoding methods pooling methods mobile robot
  • 相关文献

参考文献63

  • 1Wilcox B H. Non-geometric hazard detection for a Mars microrover[ C ]//Proceedings of the 1994 AIAA Conference on Intelligent Robotics in Field, Factory, Service and Space. Hous- ton, USA: IEEE, 1994: 675-684.
  • 2Papadakis P. Terrain traversability analysis methods for un- manned ground vehicles: A survey[ J]. Engineering Applications of Artificial Intelligence, 2013,26(4) : 1373-1385.
  • 3Bajracharya M, Howard A, Matthies L H, et al. Autonomous off- road navigation with end-to-end learning for the LAGR program [ J ]. Journal of Field Robotics, 2009, 26 ( 1 ) : 3-25.
  • 4Garcia Bermudez F L, Julian R C, Haldane D W, et al. Per- formance analysis and terrain classification for a legged robot over rough terrain[ C ]//Proceedings of the 2012 IEEE/RSJ Interna- tional Conference on Intelligent Robots and Systems. Vilamoura, Portugal: IEEE, 2012 : 513-519.
  • 5李强,薛开,徐贺,潘文林,王天龙.基于振动采用支持向量机方法的移动机器人地形分类[J].机器人,2012,34(6):660-667. 被引量:9
  • 6Kim D, Oh S M, Rehg J M. Traversability classification for ugvnavigation : A comparison of patch and superpixel representations [C J//2007 IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE, 2007 : 3166-3173.
  • 7Khan Y N, Komma P, Ze11 A. High resolution visual terrain classification for outdoor robots [ C ]//Proceedings of the 2011 IEEE International Conference on Computer Vision Workshops. Barcelona, Spain: IEEE, 2011: 1014-1021.
  • 8Gong Y H, Chuan C H, Guo X Y. Image indexing and retrieval based on color histograms [ J ]. Multimedia Tools and Applica- tions, 1996, 2(2): 133-156.
  • 9Angelova A, Matthies L, Helmick D, et al. Fast terrain classifi- cation using variable-length representation for autonomous naviga- tion[ C ]//Proceedings of the 2007 IEEE Conference on Computer Vision and Pattern Recognition. Minneapolis, MN, USA : IEEE, 2007 : 1-8.
  • 10刘丽,匡纲要.图像纹理特征提取方法综述[J].中国图象图形学报,2009,14(4):622-635. 被引量:425

二级参考文献30

  • 1许宏岩,付宜利,王树国.局部地形变化检测与移动机器人的行为决策[J].控制与决策,2005,20(8):951-954. 被引量:4
  • 2张志龙,李吉成,沈振康.基于局部沃尔什变换的纹理特征提取方法研究[J].信号处理,2005,21(6):589-596. 被引量:6
  • 3薄华,马缚龙,焦李成.图像纹理的灰度共生矩阵计算问题的分析[J].电子学报,2006,34(1):155-158. 被引量:202
  • 4陈洋,王润生.结合Gabor滤波器和ICA技术的纹理分类方法[J].电子学报,2007,35(2):299-303. 被引量:25
  • 5张学工.模式识别[M].3版.北京:清华大学出版社,2010.
  • 6CristianiniN Shawe-TaylorJ 李国正译.支持向量机导论[M].北京:电子工业出版社,2004..
  • 7Vandapel N, Huber D F, Kapuria A,et al. Natural terrain clas-sification using 3-D ladar data[C]/AEEE International Confer-ence on Robotics and Automation. Piscataway, NJ, USA: IEEE,2004: 5117-5122.
  • 8Wilcox B H. Non-geometric hazard detection for a Mars micro-rover[C]//Proceedings of the Conference on Intelligent Roboticsin Field, Factory, Service, and Space, vol.2. Washington, DC,USA: NASA, 1994: 675-684.
  • 9Iagnemma K, Brooks C A, Dubowsky S. Visual, tactile, andvibration-based terrain analysis for planetary rovers[C]/AEEEAerospace Conference. Piscataway, NJ, USA: IEEE, 2004: 841-848.
  • 10Brooks C A, Iagnemma K, Dubowsky S. Vibration-based ter-rain analysis for mobile robots[C]//IEEE International Confer-ence on Robotics and Automation. Piscataway, NJ, USA: IEEE,2005: 3415-3420.

共引文献529

同被引文献18

引证文献4

二级引证文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部