期刊文献+

利用多核增强学习的立体图像舒适度评价模型

Objective visual comfort assessment model for stereoscopic images via multiple kernel boosting
原文传递
导出
摘要 目的传统的立体视觉舒适度评价模型,在学习阶段一般采用回归算法,且需要大量的包含主观测试数据的训练样本,针对这个问题,提出一种利用多核增强学习分类算法的立体图像舒适度评价模型。方法首先,考虑人们在实际观测图像时,对于先后观测到的不同图像进行相互比较的情况,将评价模型看成是偏好分类器,构造包含偏好标签的偏好立体图像对(PSIP),构成PSIP训练集;其次,提取多个视差统计特征和神经学模型响应特征;然后,利用基于Ada Boost的多核学习算法来建立偏好标签与特征之间的关系模型,并分析偏好分类概率(即相对舒适度概率)与最终的视觉舒适度之间的映射关系。结果在独立立体图像库上,与现有代表性回归算法相比较,本文算法的Pearson线性相关系数(PLCC)在0.84以上,Spearman等级相关系数(SRCC)在0.80以上,均优于其他模型的各评价指标;而在跨库测试中,本文算法的PLCC、SRCC指标均优于传统的支持向量回归算法。结论相比于传统的回归算法,本文算法具有更好的评价性能,能够更为准确地预测立体图像视觉舒适度。 Objective To solve the problem in assessment algorithms of traditional three-dimensional visual comfort, which generally require a large amount of training data with subjective mean opinion scores to train a regression model, we propose a new visual comfort assessment model via multiple kernel boosting (MKL) method. Method First, considering the fact that humans tend to conduct a preference judgment between two stereoscopic images in terms of visual comfort, we select some representative stereoscopic images to generate preference stereoscopic image pairs (PSIPs) and construct a PSIP train- ing set with a preference label set. Second, we extract muhiple disparity statistics and feature type derived by estimating neural activity, associated with horizontal disparity processing. Then, a preference classification model is trained on the ba- sis of the MKL method by taking the vector of the aforementioned differential features and corresponding preference label of each PSIP as input. Besides, a mapping strategy between classification probability and final predictive visual comfort is analyzed. Result Experimental results demonstrate that the proposed method can obtain a Pearson linear correlation coefficient (PLCC) larger than 0. 84 and Spearman' s rank correlation coefficient (SRCC) larger than 0. 80, which are superior to those of other existing representative regression methods ; and the cross-database testing further validates that it can achieve better PLCC and SRCC performance compared with support vector regression models. Conclusion Compared with traditional regression algorithms, the proposed method performs better in predicting visual comfort accurately.
出处 《中国图象图形学报》 CSCD 北大核心 2016年第10期1328-1336,共9页 Journal of Image and Graphics
基金 国家自然科学基金项目(61271021)~~
关键词 立体图像 视觉舒适度评价 偏好标签 偏好立体图像对(PSIP) 多核增强学习 偏好分类器 stereoscopic image visual comfort assessment preference label preference stereoscopic image pair multiplekernel boosting preference classification model
  • 相关文献

参考文献31

  • 1Lambooij M, Fortuin M, Heynderickx I, et al. Visual discomfort and visual fatigue of stereoscopic displays: a review[ J ]. Journal of Imaging Science and Technology, 2009, 53 ( 3 ) : 30201-1- 30201-14.
  • 2Tam W J, Speranza F, Yano S, et al. Stereoscopic 3D-TV: visual comfort [ J ]. IEEE Transactions on Broadcasting, 2011, 57(2) : 335-346.
  • 3Lambooij M, IJsselsteijn W, Bouwhuis D G, et al. Evaluation of stereoscopic images: beyond 2D quality [ J ]. IEEE Transactions on Broadcasting, 2011, 57 (2) : 432-444.
  • 4Yano S, Emoto M, Mitsuhashi T. Two factors in visual fatigue caused by stereoscopic !dDTV images [ J ]. Displays, 2004, 25 (4) : 141-150.
  • 5Yano S, Ide S, Mitsuhashi T, et al. A study of visual fatigue and visual comfort for 3D HDTV/HDTV images[ J]. Displays, 2002, 23(4): 191-2131.
  • 6Kim D, Choi S, Sohn K. Effect of vergence-accommodation con- flict and parallax difference on binocular fusion for random dot stereogram[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2012, 22 (5) : 811-816.
  • 7Sohn H, Jung Y J, Lee S, et al. Attention model-based visual comfort assessment for stereoscopic depth perception [ C ]//Pro- ceedings of the 17th International Conference on Digital Signal Processing. Corfu: IEEE, 2011: 1-6.
  • 8Jung Y J, Lee S I, Sohn H, et al. Visual comfort assessment metric based on salient object motion information in stereoscopic video[ J ]. Journal of Electronic Imaging, 2012, 21 ( 1 ) : #011008.
  • 9Kim D, Sohn K. Visual fatigue prediction for stereoscopic image [ J]. IEEE Transactions on Circuits and Systems for Video Tech- nology, 2011, 21 (2): 231-236.
  • 10Sohn H, Jung Y J, Lee S I, et al. Predicting visual discomfort using object size and disparity information in stereoscopic images [ J]. IEEE Transactions on Broadcasting, 2013,59 (1) : 28-37.

二级参考文献19

  • 1杨春玲,陈冠豪,谢胜利.基于梯度信息的图像质量评判方法的研究[J].电子学报,2007,35(7):1313-1317. 被引量:62
  • 2Li C F,Bovik A C. Content-partitioned structural similarity index for image quality assessment[J].{H}Signal Processing:Image Communication,2010,(7):517-526.
  • 3Lin W S,Kuo C C J. Perceptual visual quality metrics:a survey[J].{H}JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION,2011,(4):297-312.
  • 4Sheikh H R,Sabir M F,Bovik A C. A statistical evaluation of recent full reference image quality assessment[J].{H}IEEE Transactions on Image Processing,2006,(11):3440-3451.
  • 5Li C F,Bovik A C,Wu X J. Blind image quality assessment using a general regression neural network[J].{H}IEEE Transactions on Neural Networks,2011,(5):793-799.
  • 6Saad M A,Bovik A C,Charrier C. A DCT statistics-based blind image quality index[J].{H}IEEE Signal Processing Letters,2010,(6):583-586.
  • 7Wang Z,Li Q. Information content weighting for perceptual image quality assessment[J].{H}IEEE Transactions on Image Processing,2011,(5):1185-1198.
  • 8Wang Z,Bovik A C,Sheikh H R. Image quality assessment:from error visibility to structural similarity[J].{H}IEEE Transactions on Image Processing,2004,(4):600-612.
  • 9Wang Z,Simoncelli E P,Bovik A C. Multi-scale structural similarity for image quality assessment[A].Pacific Grove,CA,2003.1398-1402.
  • 10Chen G H,Yang C L,Xie S L. Gradient-based structural similarity for image quality assessment[A].Atlanta,GA,2006.2929-2932.

共引文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部