期刊文献+

基于人脸认知模式的相似脸搜索 被引量:5

Similar face search based on face cognition
原文传递
导出
摘要 目的人类对人脸认知模式的探索由来已久,并且已经成功应用于美容整形等研究领域。然而,目前在计算机视觉和模式识别领域,计算人脸相似度的方法没有考虑人对人脸的认知模式,使得现有方法的计算结果从人的认知习惯角度来讲并非最佳。为克服以上缺陷,提出一种基于人脸认知模式的相似脸搜索算法。方法依据人脸认知模式,选取特征点,并计算特征量,构造各面部器官(眼睛、鼻子、嘴巴、脸型)分类模型,即面部器官形状相似性度量模型,并采用圆形LBP算子,计算两幅人脸对应器官的纹理相似度,二者综合作为相似脸搜索的依据。结果分别用本文方法和代表相似脸搜索最高水平的Face++的方法对80幅正面、中性表情、平视角度拍摄的人脸图像进行测试。本文方法的整体准确率高于Face++方法,其中,TOP1、TOP2最相似搜索结果准确率优势明显,均高出Face++方法 12%以上。结论实验结果表明,本文方法的搜索结果更加符合人脸认知模式,可应用于正面、中性表情、平视角度拍摄的人脸图像的相似脸搜索。此外,还可以将此类基于认知模式的图像搜索思路推广应用于商业领域,如基于图像的相似网购商品搜索等。 Objective Research on face recognition models has a long history, and has been successfully used in cosmetic surgery and other fields. Meanwhile, exploration of facial similarity measure methods has been conducted in the fields of computer vision and pattern recognition. Some applications, such as face recognition, face retrieval, and similar face search applications, have been widely used in many fields. Existing methods that measure face similarity are typically con- fined to calculating image similarity without incorporating face cognition patterns used by human beings. Therefore, results of current methods are usually less than optimal from the perspective of human cognitive habits. Method Based on face cog-nition patterns, each kind of facial feature, such as eyes, nose, mouth, and facial shape, is divided into several common types. For example, eyes are divided into 10 groups such as phoenix, circle, triangle, and others. After analyzing feature vectors of different types, we pick 20 images from CAS-PEAL-R1 database for each common type of every facial feature to locate feature points and calculate feature values. We use statistical values of the results to construct facial feature classifi- cation models, i. e. , contour similarity measurement models for facial features. Contour information cannot include certain facial details, e. g. , fold eyelid, high nose bridge, and so on. To measure similarity of details between two faces, we em- ploy a circular local binary pattern operator to calculate the texture similarity of corresponding facial features. A combination of contour and texture similarities is used as criterion for a similar face search. Result Our test face database contains 80 frontal neutral and head-angle face images collected from the Internet; these images are different from the aforementioned training images. Our target face database consists of two parts: 1 040 frontal images in the CAS-PEAL-R1 database and 102 star identification photos collected from the Interuet. Only a few CAS-PEAL database images are allowed to be presen- ted in papers, so extra star photos are added to the target face database. We use our method and the method provided by Face + +, which presents the highest level of similar face research, to search most similar faces for each test-face image from the target face database. Statistically, the overall accuracy of our method is higher than that of Face + +. TOP1 and TOP2 retrieval results are obviously better than Face + +, with accuracy rate gaps both reaching more than 12%. Conclusion Experimental results show that the search results of our method are more satisfactory from the perspective of human cognitive habits. Thus, our method can be applied to search similar faces for frontal neutral and head-angle face images. Besides, the proposed image search approach based on cognitive models can also be applied in the business sector, e. g. , image- based similarity search of online goods.
出处 《中国图象图形学报》 CSCD 北大核心 2016年第10期1365-1375,共11页 Journal of Image and Graphics
基金 中央高校基本科研业务费专项基金项目(2015ZCQ-XX)~~
关键词 相似脸 人脸相似度 人脸认知模式 人脸搜索 similar face face similarity face cognition patterns face search
  • 相关文献

参考文献18

  • 1Huang D Y, Lin C J, Dai S H. Face recognition using the diago- nal relative gradient method in a low illumination environment [ J ]. Journal of Information Hiding and Multimedia Signal Pro- cessing, 2014, 5(2): 310-323.
  • 2Kurita T. Principal component analysis ( PCA ) [ C ]//Computer Vision: A Reference Guide. US: Springer, 2014: 636-639.
  • 3周志铭,余松煜,张瑞,杨小康.一种基于SIFT算子的人脸识别方法[J].中国图象图形学报,2008,13(10):1882-1885. 被引量:21
  • 4Hanmandlu M, Gupta D, Vasikarla S. Face recognition using Elastic bunch graph matching [ C ]//Proceedings of the 2013 IEEE Applied Imagery Pattern Recognition Workshop. WashingtonDC: IEEE, 2013: 1-7.
  • 5Ahonen T0 Hadid A, Pietikiinen M. Face description with local binary, patterns: application to face recognition[ J]. IEEE Trans- actions on Pattern Analysis and Machine Intelligence, 2006, 28 ( 12 ) : 2037-2041.
  • 6史少博.探析中国古代“相面术”的人脸认知[J].社会科学论坛(学术研究卷),2009,0(8):19-22. 被引量:1
  • 7高景恒.美容外科学[M].2版.北京:北京科学技术出版社,2012:576-583.
  • 8Takahasi K, Ueda H, Miyahara T, et al. A study on face simi- larity using knowledge processing methods [ C ]//Proceedings of the 2005 IEEE Region 10 Conference. Melbourne, Qld. : IEEE, 2005 : 1-6.
  • 9张威.东方人的眼形分类与美容术[J].医学美学美容,1995,0(5):38-39. 被引量:3
  • 10Tamir A. Numerical survey of the different shapes of the human nose[J]. Journal of Craniofacial Surgery, 2011 , 22(3 ) : 1104- 1107.

二级参考文献14

  • 1金忠.人脸图象特征抽取与维数研究:博士论文[M].南京:南京理工大学,1999..
  • 2刘博文,余松煜,徐奕,杨小康.宽基线主动视觉中感兴趣目标的对应技术[J].中国图象图形学报,2007,12(10):1917-1921. 被引量:3
  • 3Harmon L D, Kuo S C, Raming P F, et al. Identification of human face profiles by computer[ J ]. Pattern Recognition, 1987,10 (5 - 6) : 301- 312.
  • 4Viola P, Jones M. Robust real-time face detection[ J]. International Journal of Computer Vision, 2004,57 (5) : 137 - 154.
  • 5Lowe D. Distinctive image features from scale-invariant key points [ J ]. International Journal of Computer Vision, 2004,60(2) :91 - 110.
  • 6Lowe, David G, Object recognition from local scale invariant features [ A ]. In:Proceedings of International Conference on Computer Vision [C], Corfu, Greece, 1999:1150-1157.
  • 7Ke Y, Sukthankar R. PCA-SIFT: A more distinctive representation for local image descriptors [ A ]. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition [ C ] , Washington DC, USA, 2004:506 - 513.
  • 8(美)利奥波德·贝拉克(LeopoldBellak),(美)萨姆·辛克莱尔·贝克(SammSinclairBaker)著,蔡曙光等.解读面孔[M]社会科学文献出版社,2005.
  • 9周蔚,计玉强,沈正洲.鼻部整形技术修复鼻外伤畸形的临床分析[J].医学信息(下旬刊),2009(6):66-66. 被引量:1
  • 10肖调立,田道法,刘刚.运用整形技术及原则美容性修复鼻外伤[J].中国美容医学,2011,20(7):1043-1045. 被引量:5

共引文献43

同被引文献28

引证文献5

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部